
MITSUBISHI CARBIDE MOTOR PARTS TOOLING

MOTOR PARTS SPECIAL TOOLING

Vol.2 TRANSMISSION PARTS

MANUAL TRANSMISSION (MT)

AT 74

4AT 78

GEAR 81

Stators

AUTOMOTIVE TOOLING

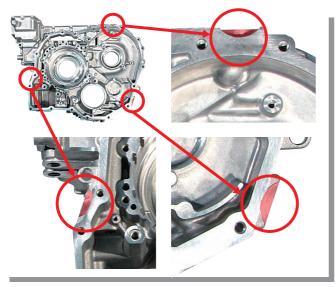
Transmission cases

Main machining

- **1** Mounting face
- **2Various locating holes**
- **③Various locating faces**
- **4** Various bores

Machining methods

Milling


Drilling

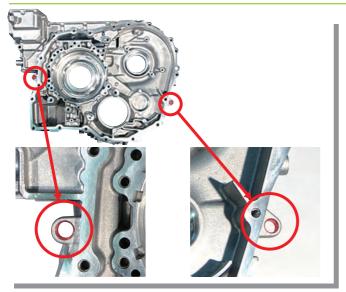
Boring

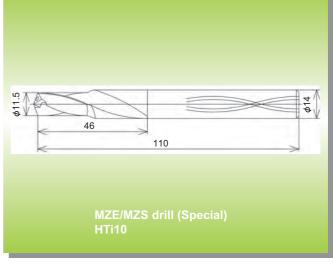
Reaming

OP.1 (Reference face)

For machining centres

Tool features


Standard BXD type cutter with TF15 inserts. Specially designed G-class inserts for excellent wall accuracy.



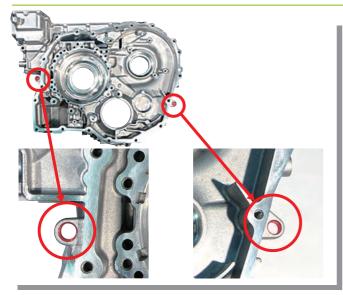
Cutting conditions

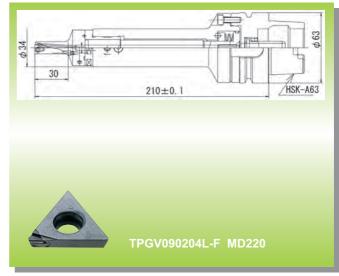
vc=1,000m/min n=7,962min⁻¹ fz=0.1mm/tooth vf=2,389mm/min Wet

OP.2 (Pre-drilling of the locating holes) For machining centres

Tool features

Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS offers a sharp cutting edge geometry)


Cutting conditions


vc=150m/min n=4,154min⁻¹ fr=0.1mm/rev vf=415mm/min Wet

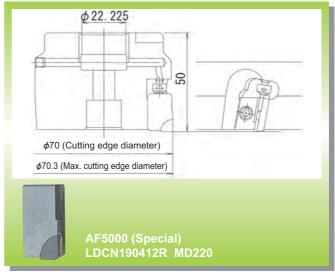
Tooling Sheet 2

OP.3 (Finishing of locating holes)

For machining centres

Tool features


Boring bar with a diameter adjustment function. Use of an adjustable unit makes it possible to adjust the cutting edge diameter to a desired value.

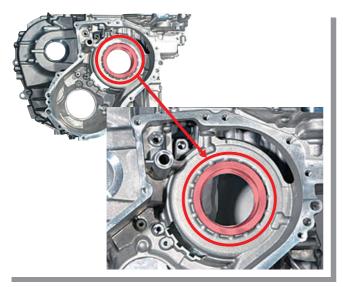

Cutting conditions

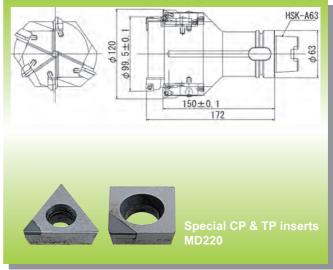
vc=300m/min fz=0.06mm/tooth vf=500mm/min Wet

OP.4 (Rough machining of the mounting faces) For machining centres

Tool features

Special AF5000 type cutter with MD220 inserts.


Possible to finely adjust the axial run-out of the inserts.

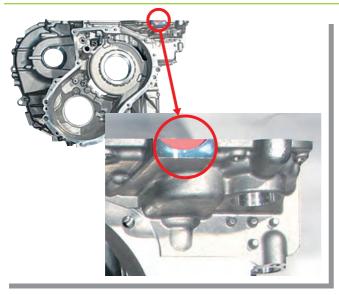

Cutting conditions

vc=1,760m/min fz=0.1mm/tooth vf=4,000mm/min Wet

Tooling Sheet 4

OP.5 (Roughing of shaft hole) For machining centres

Tool features


Combination boring cutter with special MD220 inserts. Boring, facing and chamfering are carried out in one plunge process. Cartridge type for high precision machining.

Cutting conditions

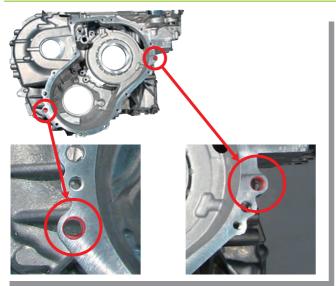
vc=350m/min fz=0.1mm/tooth vf=200mm/min Wet

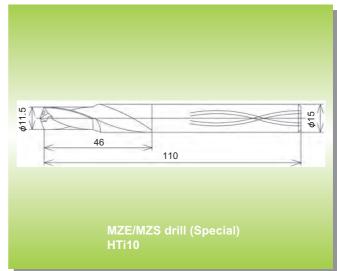
OP.6 (Conveyor seat face)

For machining centres

BXD4000R403SA42SA XDGT1550PDFR-G04 TF15

Tool features


Standard BXD type cutter with TF15 inserts. Specially designed G-class inserts for excellent wall accuracy.

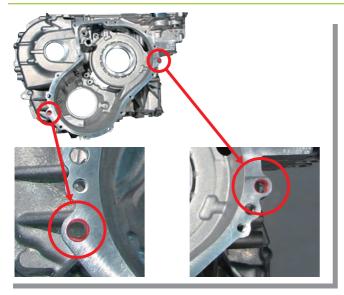

Cutting conditions

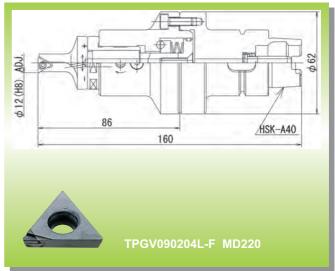
vc=1,000m/min n=7,962min⁻¹ fz=0.3mm/tooth vf=7,166mm/min Wet

Tooling Sheet 6

OP.7 (Pre-drilling of assembly locating holes) For machining centres

Tool features

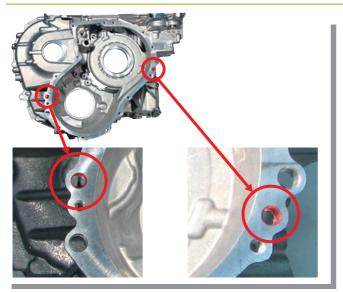

Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS offers a sharp cutting edge geometry)

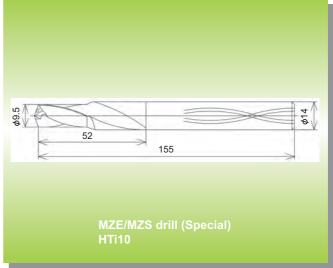

Cutting conditions

vc=150m/min n=4,154min⁻¹ fr=0.1mm/rev vf=415mm/min Wet

OP.8 (Finishing of assembly locating holes) For machining centres

Tool features

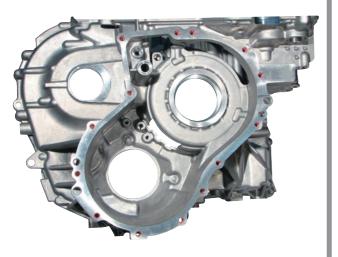

Boring bar with a diameter adjustment function. Use of an adjustable unit makes it possible to adjust the cutting edge diameter to a desired value.

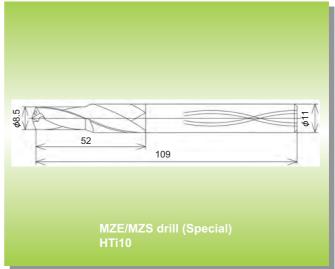

Tool features

vc=300m/min fz=0.06mm/tooth vf=500mm/min Wet

Tooling Sheet 8

OP.9 (Side cover dowel location holes) For machining centres


Tool features

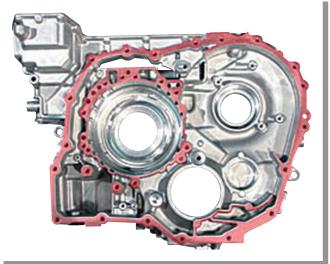

Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS offers a sharp cutting edge geometry)

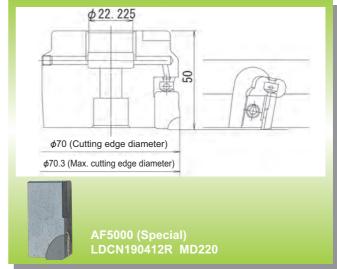
Tool features

vc=150m/min n=5,028min⁻¹ fz=0.1mm/rev vf=503mm/min Wet

OP.10 (Side cover mounting holes) For machining centres

Tool features


Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS offers a sharp cutting edge geometry)

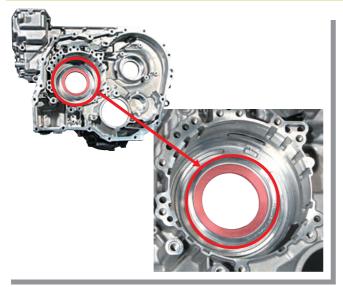

Cutting conditions

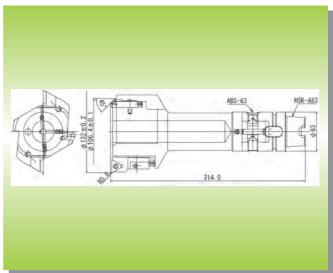
vc=160m/min n=5,995min⁻¹ fr=0.13mm/rev vf=779mm/min Wet

Tooling Sheet 10

OP.11 (Rough machining of mounting faces) For machining centres

Tool features

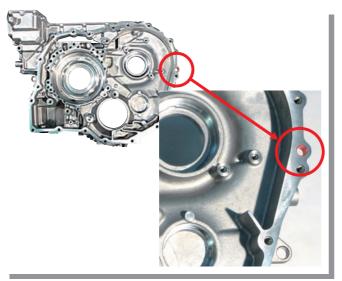

Special AF5000 type cutter with MD220 inserts. Possible to finely adjust the axial run-out of the inserts.

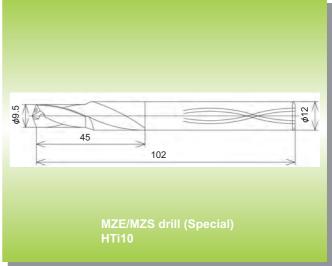

Cutting conditions

vc=1,540m/min fz=0.13mm/tooth vf=500mm/min Wet

OP.12 (Roughing of shaft hole) For machining centres

Tool features

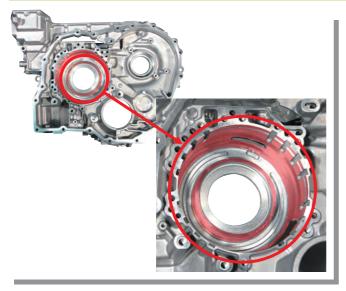

Special combination boring cutter with special MD220 inserts. Combination cutter for facing and chamfering. Cartridge type for high precision machining. Use of an ABS clamping system on the head enables high installation repeatability accuracy and convenient head exchange.

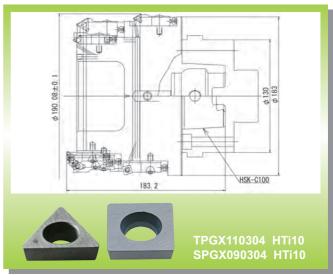

Cutting conditions

vc=405m/min fr=0.05mm/rev vf=50mm/min Wet

Tooling Sheet 12

OP.13 (Housing dowel location holes) For machining centres


Tool features


Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS offers a sharp cutting edge geometry)

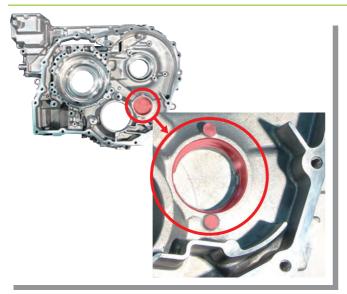
Cutting conditions

vc=100m/min n=3,352min⁻¹ fr=0.1mm/rev vf=335mm/min Wet

OP.14 (Roughing of shaft hole) For machining centres

Tool features

Special combination boring cutter with HTi10 inserts. Facing and chamfering can be performed in one process, allowing drastic process consolidation and higher production efficiency.


Cartridge type for high precision machining.

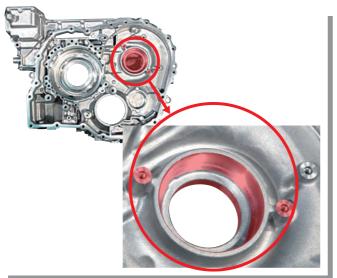
Cutting conditions

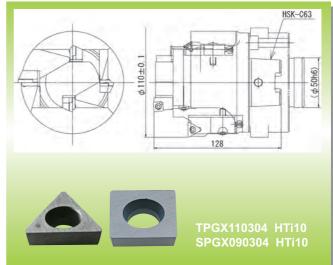
vc=600m/min fr=0.2mm/rev vf=382mm/min Wet

Tooling Sheet 14

OP.15 (Roughing of reduction hole) For machining centres

Tool features

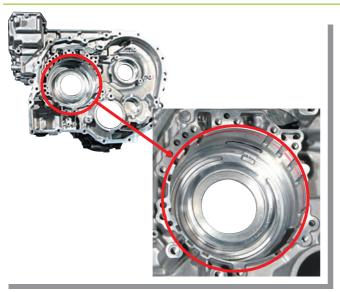

Special combination boring cutter with HTi10 inserts. Combination cutter for facing and chamfering.

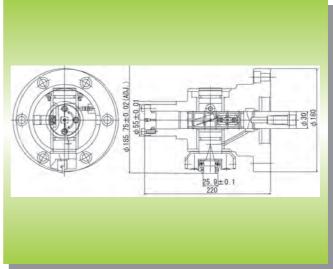

Cutting conditions

vc=580m/min fr=0.03mm/rev vf=80mm/min Wet

OP.16 (Roughing of differential hole) For machining centres

Tool features


Special combination boring cutter with HTi10 inserts. Combination cutter for facing and chamfering.

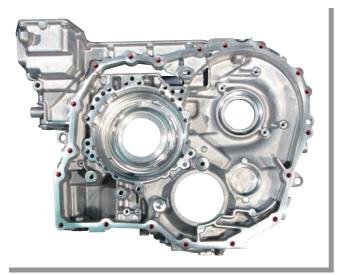

Cutting conditions

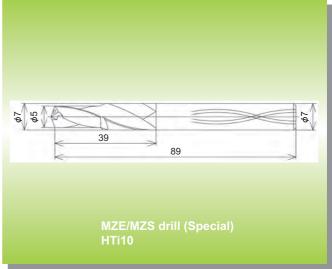
vc=580m/min fr=0.1mm/rev vf=264mm/min Wet

Tooling Sheet 16

OP.17 (Grooving of shaft hole) For machining centres

Tool features


Special grooving cutter with special HTi10 inserts. Simultaneous grooving is possible. Insert position can be adjusted by adjusting the machine's drawbar.

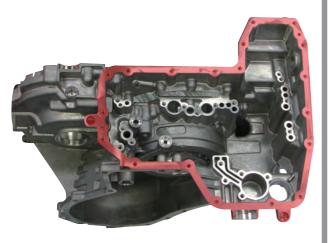

Cutting conditions

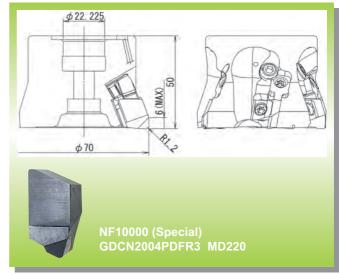
vc=400m/min fr=0.1mm/rev ap=1.2mm W=2mm Wet

OP.18 (Mounting holes)

For machining centres

Tool features


Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS offers a sharp cutting edge geometry)


Cutting conditions

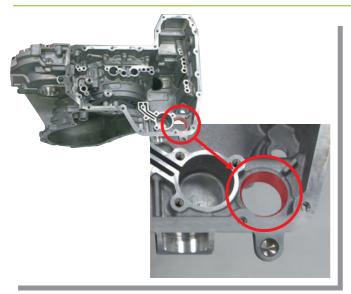
vc=125m/min n=7,962min⁻¹ fr=0.13mm/rev vf=1,035mm/min Wet

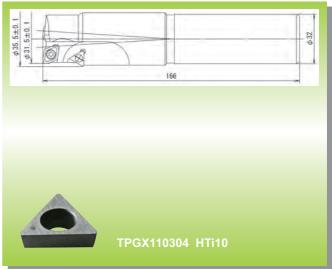
Tooling Sheet 18

OP.19 (Oil pan mounting face) For machining centres

Tool features

Special NF10000 type cutter with MD220 inserts. Finish milling cutter with high wear and weld resistant MD220 inserts for high speed machining. Radius minor edge for high surface finishes.

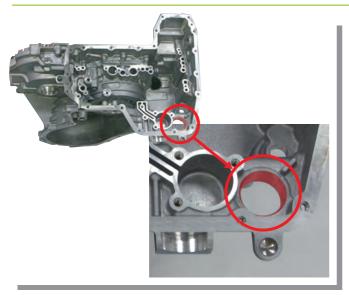

Cutting conditions

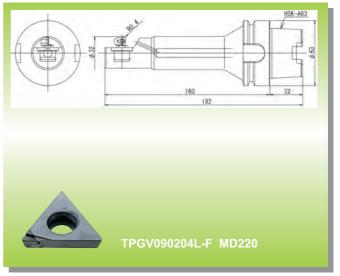

vc=1,759m/min fz=0.1mm/tooth vf=4,000mm/min Wet

OP.20 (Roughing of harness hole)

For machining centres

Tool features


Special combination boring cutter with special HTi10 inserts. For the boring operation, inserts with the same geometry as the standard TAF drill can be used. Economical 4 corner use.


Cutting conditions

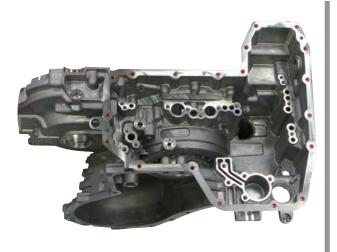
vc=446m/min fr=0.15mm/rev vf=676mm/min Wet

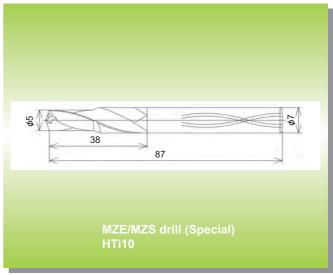
Tooling Sheet 20

OP.21 (Finishing of harness hole) For machining centres

Tool features

Special boring bar with MD220 inserts.


To prevent return marks, back boring is performed.


The clamping face is tapered to increase overall rigidity for high machining accuracy.

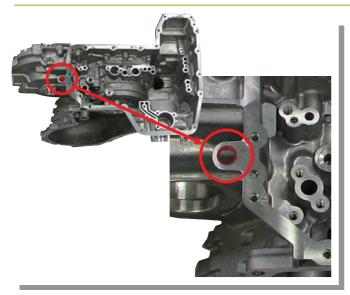
Cutting conditions

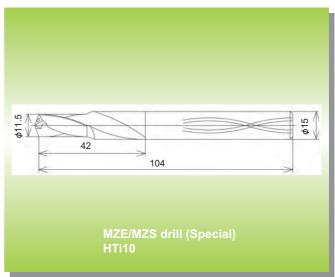
vc=351m/min fr=0.08mm/rev vf=280mm/min Wet

OP.22 (Oil pan mounting holes) For machining centres

Tool features

Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS drill cutting edge geometry, sharp edge)


Cutting conditions


vc=125m/min n=7,962min⁻¹ fr=0.08mm/rev vf=637mm/min Wet

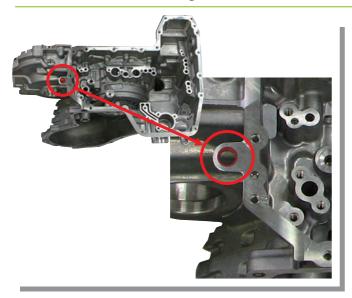
Tooling Sheet 22

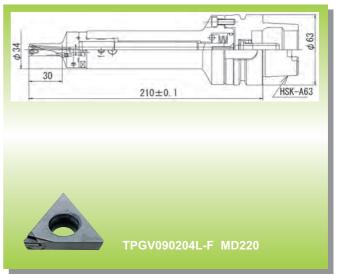
OP.23 (Conveyor seat face)

For machining centres

Tool features

Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS offers a sharp cutting edge geometry)


Cutting conditions

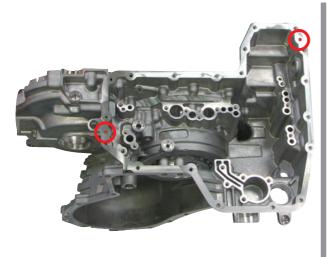

vc=150m/min n=4,154min⁻¹ fr=0.1mm/rev vf=415mm/min Wet

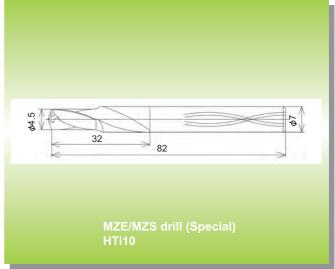
OP.24 (Conveyor seat face)

For machining centres

Tool features

Special boring bar with a diameter adjustment function with MD220 inserts. Use of an adjustable unit makes it possible to change an adjustment amount to the desired value. Easy diameter adjustment.

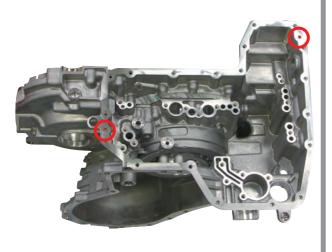

Cutting conditions

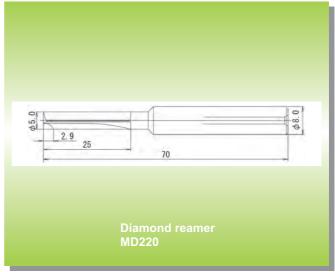

vc=301m/min fr=0.06mm/rev vf=500mm/min Wet

Tooling Sheet 24

OP.25 (Dowel location holes)

For machining centres


Tool features


Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS offers a sharp cutting edge geometry)

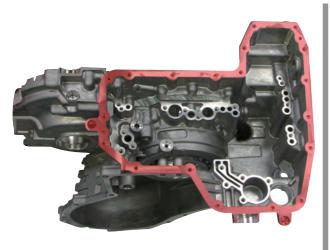
Cutting conditions

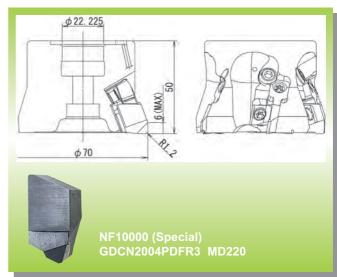
vc=100m/min n=7,077min⁻¹ fr=0.08 mm/rev vf=566mm/min Wet

OP.26 (Dowel location holes) For machining centres

Tool features

Special PCD reamer.


Use of MD220 cutting edge with high welding resistance. Straight flute for high precision machining.


Cutting conditions

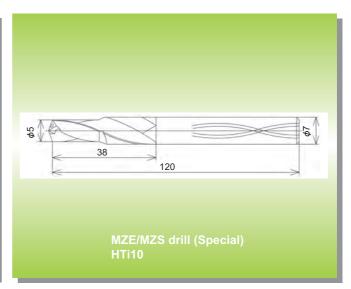
vc=78m/min fr=0.04mm/rev vf=400mm/min Wet

Tooling Sheet 26

OP.27 (Finishing oil pan mounting surface) For machining centres

Tool features

Special NF10000 type cutter with MD220 inserts. Finish milling cutter with high wear and weld resistant MD220 inserts for high speed machining. Radius minor edge for high surface finishes.


Cutting conditions

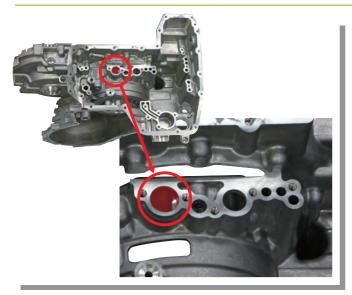
vc=1,539m/min fz=0.11mm/tooth vf=4,000mm/min Wet

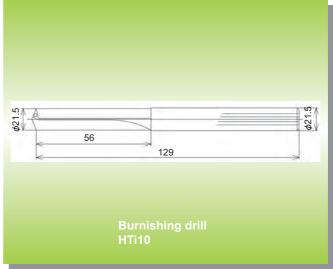
OP.28 (Pre-drilling valve mounting holes) For machining centres

8

Tool features

Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS offers a sharp cutting edge geometry)


Cutting conditions

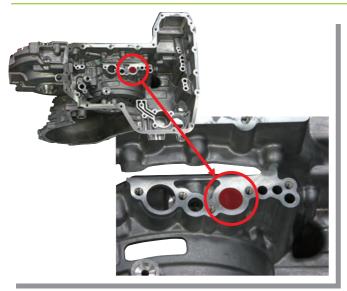

vc=125m/min n=7,962min⁻¹ fr=0.08mm/rev vf=637mm/min Wet

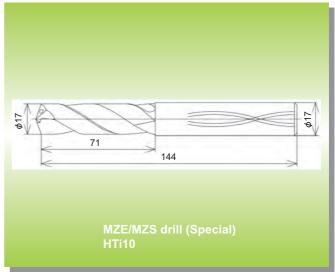
Tooling Sheet 28

OP.29 (Oil pan inlet holes)

For machining centres

Tool features


Special burnish drill in HTi10 grade. Straight flute for easy re-grinding. (Solid carbide, straigth flute)

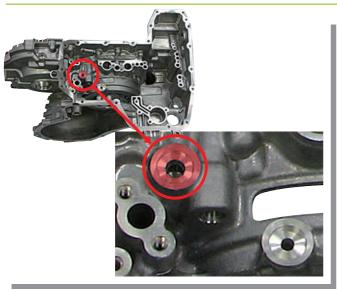

Cutting conditions

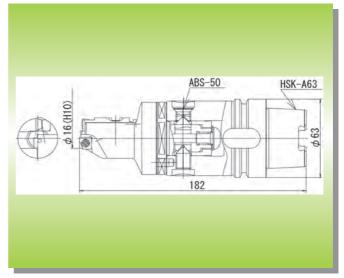
vc=337m/min fr=0.1mm/rev vf=1,000mm/min Wet

OP.30 (Oil pan outlet holes)

For machining centres

Tool features


Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS offers a sharp cutting edge geometry)

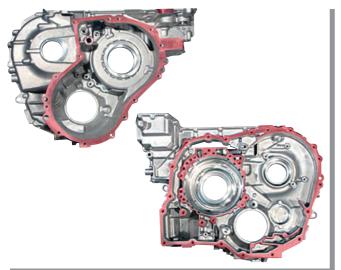

Cutting conditions

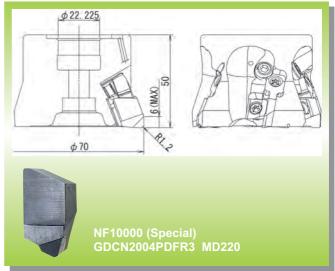
vc=170m/min n=3,185min⁻¹ fr=0.2mm/rev vf=637mm/min Wet

Tooling Sheet 30

OP.31 (Lubrication circuit face) For machining centres

Tool features


Special boring cutter with special HTi10 and MD220 inserts. Combined machining of facing and chamfering.
Use of ABS clamping system on the head enables high installation repeatability accuracy and convenient head exchange.

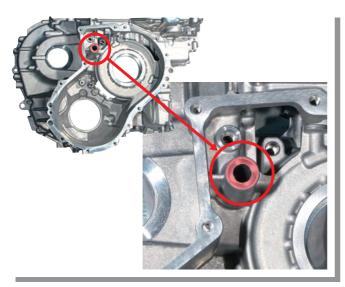

Cutting conditions

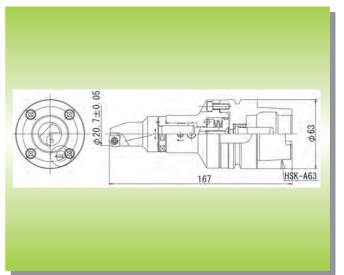
vc=188m/min fr=0.1mm/rev vf=300mm/min Wet

OP.32 (Various mounting faces) For machining centres

Tool features

Special NF10000 type cutter with MD220 inserts. Finish milling cutter with high wear and weld resistant MD220 inserts for high speed machining. Radius minor edge for high surface finishes.

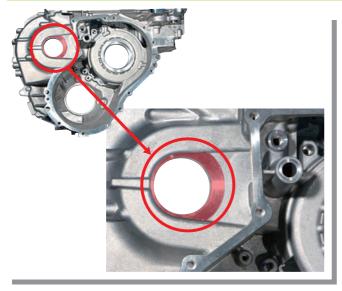

Cutting conditions


vc=1,539m/min fz=0.11mm/rev vf=4,000mm/min Wet

Tooling Sheet 32

OP.33 (Circuit holes)

For machining centres


Tool features

Special boring bar with a diameter adjustment function with MD220 inserts. Use of an adjustable unit makes it possible to change an adjustment amount to the desired value. Easy diameter adjustment.

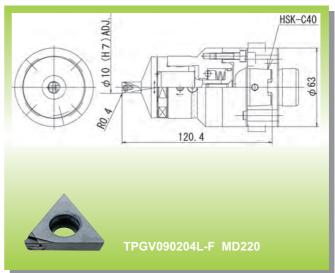
Cutting conditions

vc=195m/min fr=0.1mm/rev vf=300mm/min Wet

OP.34 (End face of differential oil seal) For machining centres

Tool features

Special milling cutter with HTi10 grade. Combination cutter for facing and chamfering.


Cutting conditions

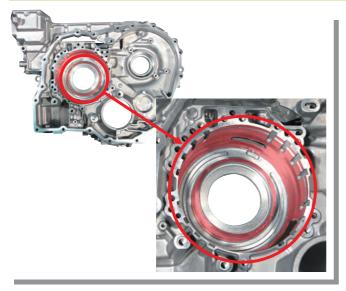
vc=659m/min fz=0.2mm/rev vf=300mm/min Wet

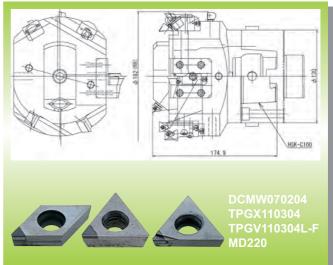
Tooling Sheet 34

OP.35 (Housing dowel location holes) For machining centres

Tool features

Special boring bar with a diameter adjustment function with MD220 inserts. Use of an adjustable unit makes it possible to change the amount of adjustment to the desired value. Easy diameter adjustment.


Cutting conditions


vc=125m/min fr=0.05mm/rev vf=200mm/min Wet

OP.36 (Shaft hole)

For machining centres

Tool features

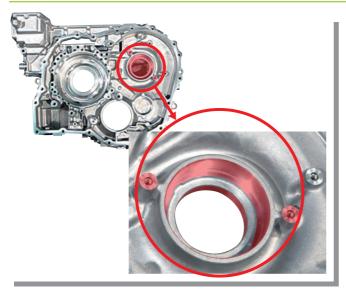
Special boring cutter with MD220 inserts. Numerous cartridges are used to perform facing and chamfering in one process. Enables drastic process consolidation and higher production efficiency.

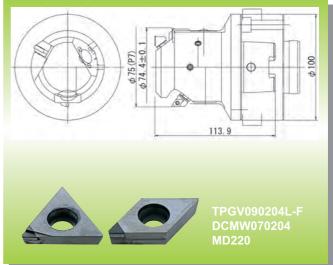

Cutting conditions

vc=130m/min fr=0.2mm/rev vf=51mm/min Wet

Tooling Sheet 36

OP.37 (Finishing of reduction holes) For machining centres


Tool features

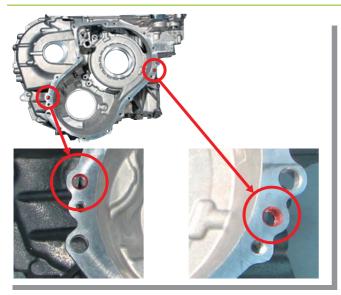

Special boring cutter with special MD220 inserts. Use of a finishing type, high precision boring unit. Fine adjustment of inserts can be carried out with ease.

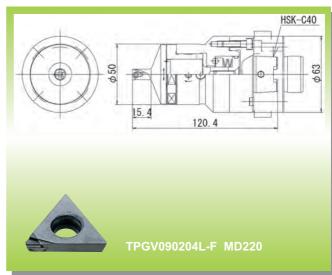
Cutting conditions

vc=600m/min fr=0.08mm/rev vf=247mm/min Wet

OP.38 (Finishing of differential gear holes) For machining centres

Tool features


Special combination boring cutter with MD220 inserts. Combination cutter for facing and chamfering. Use of cartridge enables high precision machining.


Cutting conditions

vc=650m/min fr=0.05mm/rev vf=148mm/min Wet

Tooling Sheet 38

OP.39 (Side cover dowel location holes) For machining centres

Tool features

Special boring bar with a diameter adjustment function with MD220 inserts. Use of an adjustable unit makes it possible to change an adjustment amount to the desired value. Easy diameter adjustment.

Cutting conditions

vc=125m/min fr=0.04mm/rev vf=150mm/min Wet

Clutch housings

Work material: ADC10

Main machining

- **Mounting face**
- **②Various locating holes**
- **③Various locating faces**
- **4** Various bores

Machining methods

Milling

Drilling

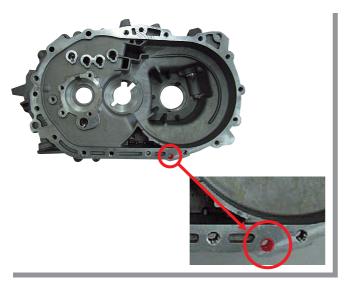
Boring

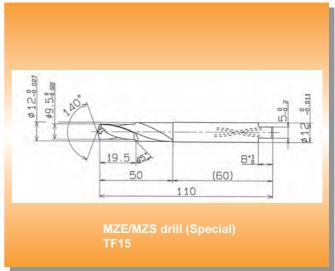
Reaming

OP.1 (Machining of mounting face)

For machining centres

Tool features


Special NF10000 type cutter with MD220 inserts. Finish milling cutter with high wear and weld resistant MD220 inserts for high speed machining. Radius minor edge for high surface finishes.

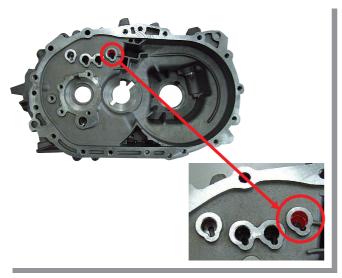


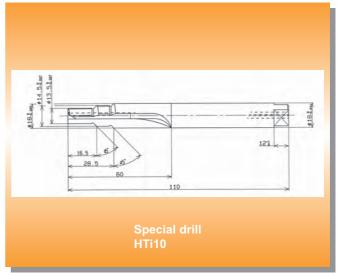
Cutting conditions

vc=1,507m/min fz=0.15mm/tooth vf=5,400mm/min ap=2mm Wet

OP.2 (Pre-drilling of ϕ 10 reference hole) For machining centres

Tool features


Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS offers a sharp cutting edge geometry)


Cutting conditions

vc=150m/min fr=0.20mm/rev vf=1,005mm/min Wet

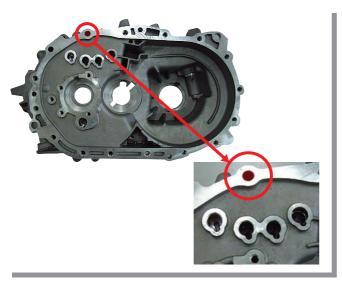
Tooling Sheet 2

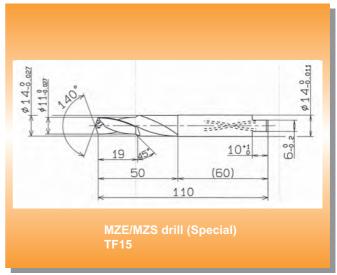
OP.3 (Pre-drilling of ϕ 13.5 x ϕ 15) For machining centres

Tool features

Special drill with through coolant holes in HTi10 grade. Multi-step drill consolidates processes and reduces machining costs.

Straight flute for easy re-grinding.


Cutting conditions


vc=200m/min fr=0.20mm/rev vf=944mm/min Wet

OP.4 (ϕ 11 reference hole)

For machining centres

Tool features

Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS offers a sharp cutting edge geometry)

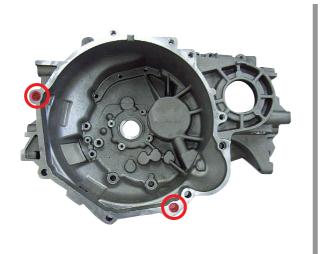
Cutting conditions

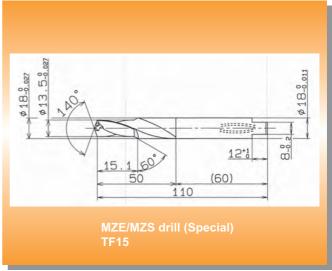
vc=150m/min fr=0.10mm/rev vf=434mm/min Wet

Tooling Sheet 4

OP.5 (Machining of mounting face)

For machining centres


Tool features

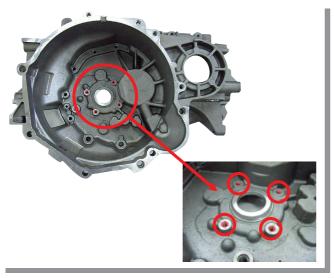

Special NF10000 type cutter with MD220 inserts. Finish milling cutter with high wear and weld resistant MD220 inserts for high speed machining. Radius minor edge for high surface finishes.

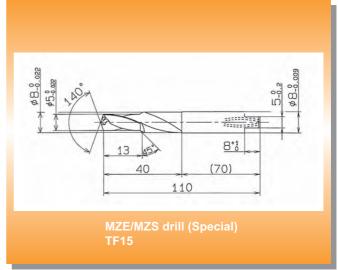
Cutting conditions

vc=1,507m/min fz=0.15mm/tooth vf=5,400mm/min ap=2mm Wet

OP.6 (Pre-drilling of ϕ 14 dowel location holes) For machining centres

Tool features


Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS offers a sharp cutting edge geometry)

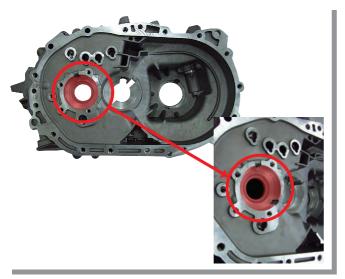

Cutting conditions

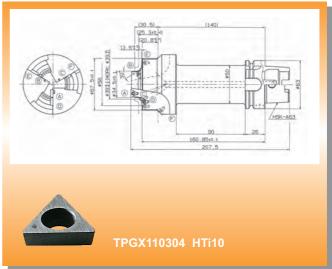
vc=150m/min fr=0.2mm/rev vf=707mm/min Wet

Tooling Sheet 6

OP.7 (Pre-drilling of M6 tap hole) For machining centres

Tool features

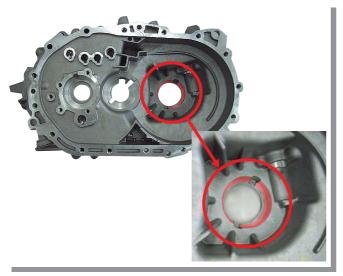

Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS offers a sharp cutting edge geometry)

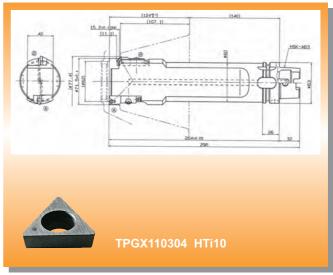

Cutting conditions

vc=120m/min fr=0.2mm/rev vf=1,529mm/min Wet

OP.8 (Back boring the main shaft hole_1) For machining centres

Tool features


Special combination boring cutter with HTi10 inserts. Possible to perform 6 processes boring, facing and chamfering in one process for drastic process consolidation and higher production efficiency.


Cutting conditions

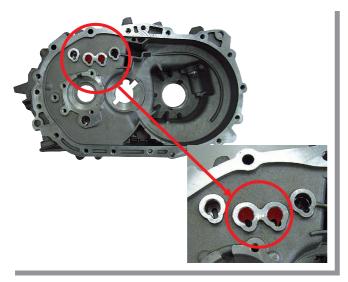
vc=357~700m/min fr=0.2mm/rev vf=660mm/min ap=1.5mm Wet

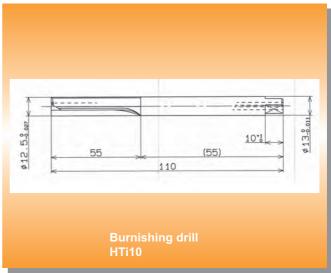
Tooling Sheet 8

OP.9 (Back boring the output shaft hole_1) For machining centres

Tool features

Special combination boring cutter with HTi10 inserts.


Possible to perform facing and chamfering in one process for drastic process consolidation and higher production efficiency. Cartridge type for high precision machining.

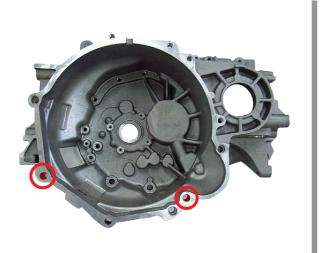

Cutting conditions

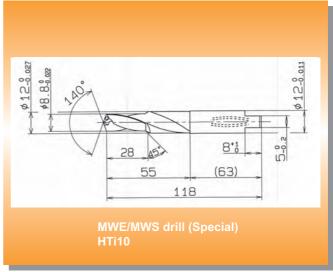
vc=700m/min fr=0.2mm/rev vf=620mm/min Wet

OP.10 (Pre-drilling ϕ 13)

For machining centres

Tool features


Special burnish drill with through coolant holes. Straight flute for easy re-grinding.


Cutting conditions

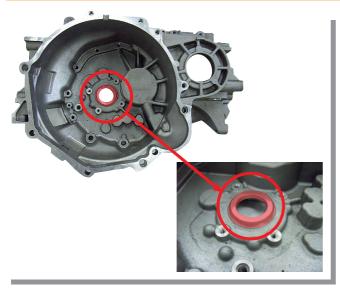
vc=200m/min fr=0.2mm/rev vf=1,019mm/min Wet

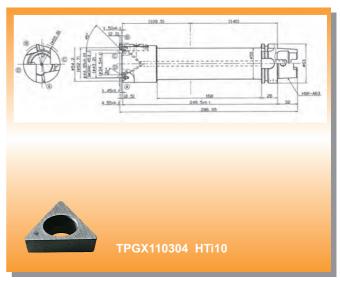
Tooling Sheet 10

OP.11 (Pre-drilling of M10 tap hole) For machining centres

Tool features

Special MWE / MWS drill with through coolant holes. Step drill consolidates processes and reduces machining costs. Wave cutting edge gives a balance of edge strength and sharpness. High precision, stable machining.

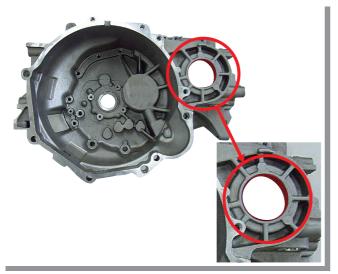

Cutting conditions

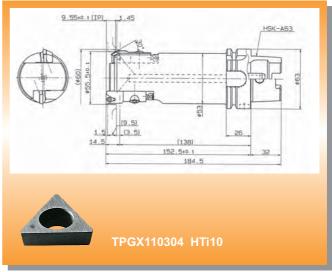

vc=150m/min fr=0.2mm/rev vf=1,086mm/min Wet

OP.12 (Boring the main shaft hole)

For machining centres

Tool features

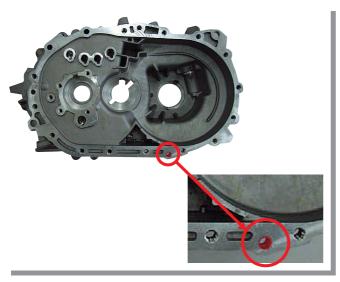

Special combination boring cutter with HTi10 inserts. For facing, boring and chamfering. Cartridge type for high precision machining.

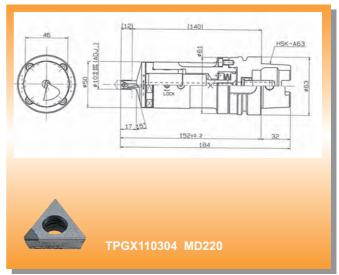

Cutting conditions

vc=600m/min fr=0.1mm/rev vf=420mm/min Wet

Tooling Sheet 12

OP.13 (Boring the output shaft hole) For machining centres


Tool features

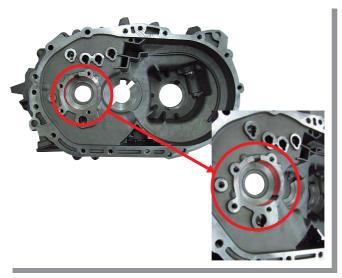

Special combination boring cutter with HTi10 inserts. For boring and chamfering. Cartridge type for high precision machining.

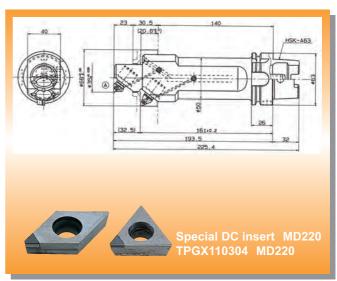
Cutting conditions

vc=600m/min fr=0.2mm/rev vf=688mm/min Wet

OP.14 (Boring of ϕ 10 datum hole) For machining centres

Tool features


Special boring bar with a diameter adjustment function with MD220 inserts. Use of an adjustable unit makes it possible to change an adjustment amount to the desired value. Easy diameter adjustment.


Cutting conditions

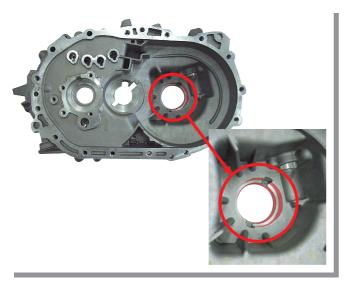
vc=251m/min fr=0.06mm/rev vf=480mm/min Wet

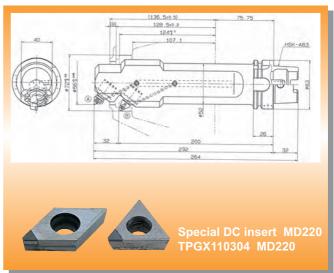
Tooling Sheet 14

OP.15 (Back boring the main shaft hole_2) For machining centres

Tool features

Special combination boring cutter with special MD220 inserts. Use of a finishing type, high precision boring unit. Fine adjustment of inserts can be carried out with ease, enabling high precision machining.

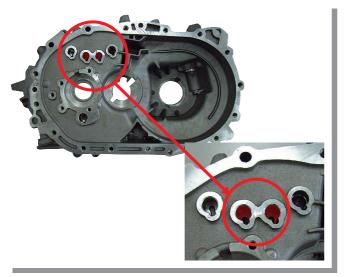

Cutting conditions

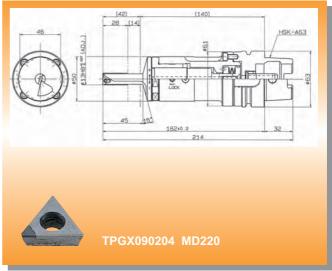

vc=226~427m/min fr=0.06mm/rev vf=120mm/min Wet

OP.16 (Back boring the output shaft hole_2)

For machining centres

Tool features


Special combination boring cutter with special MD220 inserts. Use of a finishing type, high precision boring unit. Fine adjustment of inserts can be carried out with ease, enabling high precision machining.

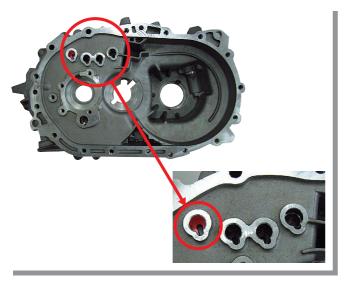

Cutting conditions

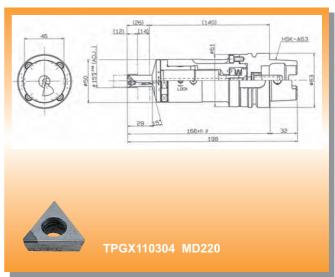
vc=345~452m/min fr=0.06mm/rev vf=120mm/min Wet

Tooling Sheet 16

OP.17 (Boring circuit holes A) For machining centres

Tool features


Special boring bar with a diameter adjustment function with MD220 inserts. Use of an adjustable unit makes it possible to change an adjustment amount to the desired value. Easy diameter adjustment.


Cutting conditions

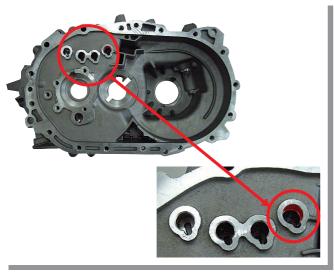
vc=327m/min fr=0.06mm/rev vf=480mm/min Wet

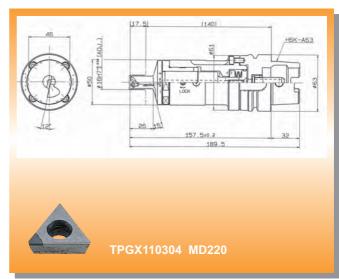
OP.18 (Boring circuit hole B)

For machining centres

Tool features

Special boring bar with a diameter adjustment function with MD220 inserts. Use of an adjustable unit makes it possible to change an adjustment amount to the desired value. Easy diameter adjustment.


Cutting conditions


vc=327m/min fr=0.06mm/rev vf=480mm/min Wet

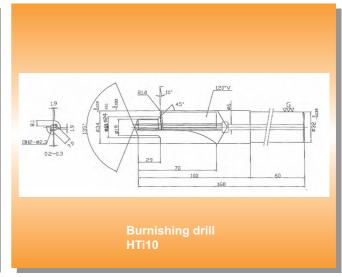
Tooling Sheet 18

OP.19 (Boring circuit hole C)

For machining centres

Tool features

Special boring bar with a diameter adjustment function with MD220 inserts. Use of an adjustable unit makes it possible to change an adjustment amount to the desired value. Easy diameter adjustment.


Cutting conditions

vc=402m/min fr=0.06mm/rev vf=480mm/min Wet

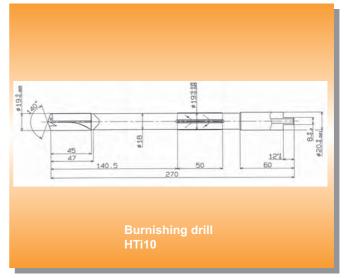
OP.20 (Pre-drilling & spot facing of ϕ 22) For machining centres

Tool features

Special burnish drill with through coolant holes in HTi10 grade. Process consolidation by performing pre-drilling and spot facing in one process.

Straight flute for easy re-grinding.

Cutting conditions

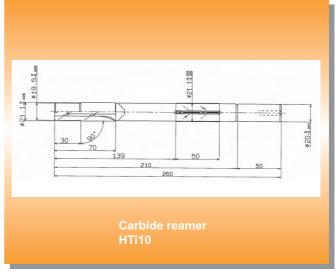

vc=239 / 427m/min $\ fr=0.2$ / 0.1mm/rev vf=800 / 400mm/min Wet

Tooling Sheet 20

OP.21 (Pre-drilling of ϕ 20)

For machining centres

Tool features


Special burnish drill with through coolant holes in HTi10 grade. Straight flute for easy re-grinding.

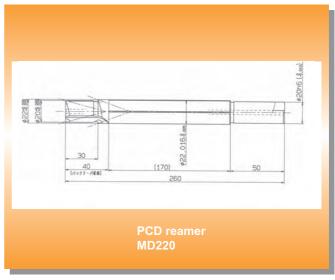
Cutting conditions

vc=252m/min fr=0.2mm/rev vf=840mm/min Wet

OP.22 (Semi-finishing of ϕ 20 x ϕ 22) For machining centres

Tool features

Carbide reamer with guide pads in HTi10 grade. Self-guiding ensures high precision machining.


Cutting conditions

vc=269 / 297m/min fr=0.2mm/rev vf=880mm/min Wet

Tooling Sheet 22

OP.23 (Finishing of ϕ 20 x ϕ 22) For machining centres

Tool features

PCD reamer with guide pads.
Self-guiding ensures high precision machining.

Cutting conditions

vc=200m/min fr=0.1mm/rev vf=320mm/min Wet

Torque converter cover

Main machining

- **1** Mounting face
- **2 Various holes**

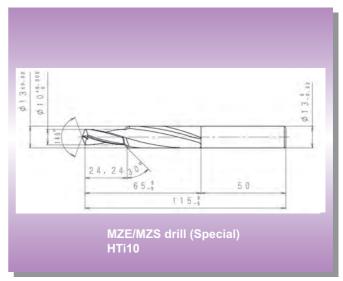
Machining methods
Milling
Drilling

OP.1 (Engine mounting face)

For machining centres

Tool features

Special NF10000 type cutter with MD220 inserts. Finish milling cutter with high wear and weld resistant MD220 inserts for high speed machining. Radius minor edge for high surface finishes.


Cutting conditions

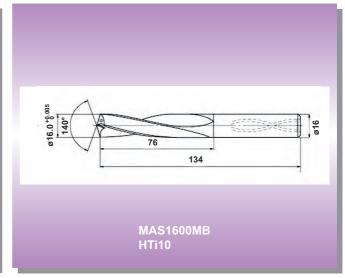
vc=1,260m/min n=4,012min⁻¹ fz=0.15mm/tooth vf=4,814mm/min ap=1.5mm Wet

OP.2 (Locating holes)

For machining centres

Tool features

Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS offers a sharp cutting edge geometry)


Cutting conditions

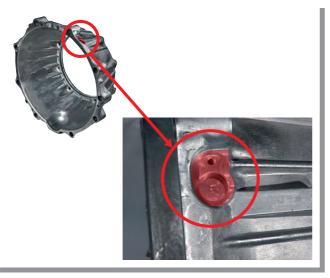
vc=100m/min n=3,185min-1 fr=0.12mm/rev Wet

Tooling Sheet 2

OP.3 (Engine mounting holes) For machining centres

Tool features

Standard super burnish drill.
Use of a double margin enables high precision drilling.


Cutting conditions

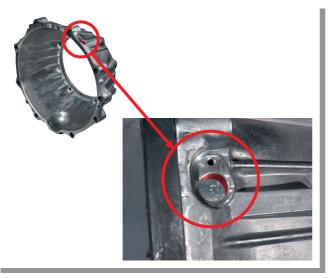
vc=123m/min n=2,448min⁻¹ fr=0.12mm/rev Wet

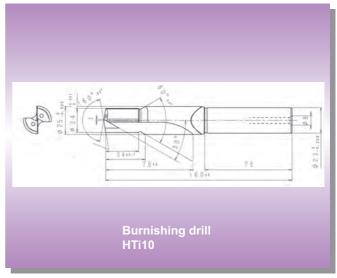
OP.4 (Sensor surface)

For machining centres

Tool features

Standard BXD type cutter with TF15 inserts. Specially designed G-class inserts for excellent wall accuracy.


Cutting conditions

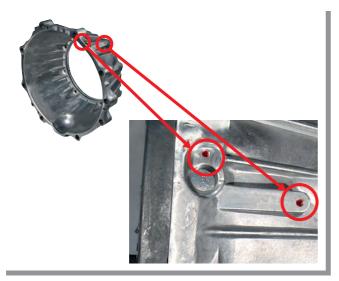

vc=300m/min n=2,986min $^{\text{-}1}$ fz=0.2mm/tooth vf=1,194mm/min Wet

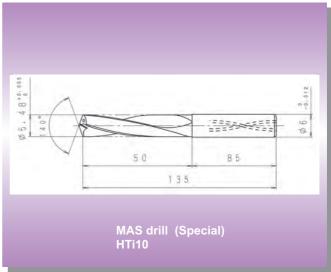
Tooling Sheet 4

OP.5 (Sensor holes)

For machining centres

Tool features


Special burnish drill in HTi10 grade. The 2-flute cutting edge allows good chip control.


Cutting conditions

vc=138m/min n=1,831min⁻¹ fr=0.4mm/rev Wet

OP.6 (Pre-drilling of tap holes for cooler bracket installation)

For machining centres

Tool features

Special MAS drill in HTi10 grade. Use of a double margin enables high precision drilling.

Cutting conditions

vc=150m/min n=8,717min-1 fr=0.1mm/rev Wet

Tooling Sheet 6

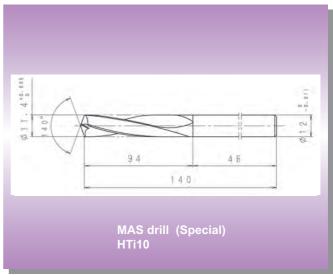
OP.7 (Case mounting face)

For machining centres

Tool features

Special NF10000 type cutter with MD220 inserts. Finish milling cutter with high wear and weld resistant MD220 inserts for high speed machining. Radius minor edge for high surface finishes.

Cutting conditions


vc=1,000m/min n=3,184min $^{\text{-}1}$ fz=0.2mm/tooth vf=5,094mm/min Wet

OP.8 (Case mounting holes)

For machining centres

Tool features

Special MAS drill in HTi10 grade.
Use of a double margin enables high precision drilling.

Cutting conditions

vc=123m/min n=3,436min⁻¹ fr=0.12mm/rev Wet


Valve body Upper side

Work material : ADC12

Main machining

- **①Circuit face**
- **②Back face**
- **3Various holes**

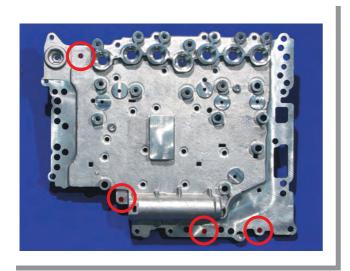
Machining methods
Milling
Drilling
Boring

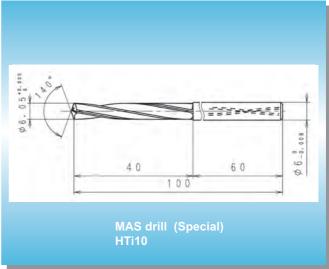
OP.1 (Roughing of the circuit surface, back face boss)

For machining centres

Tool features

Standard NF10000 type cutter with MD220 inserts.
Finish milling cutter with high wear and weld resistant
MD220 inserts for high speed machining. Chamfer honed
main cutting edges increases cutting edge strength.


Cutting conditions

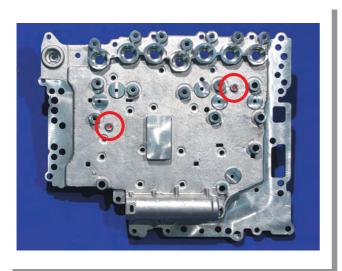

 $\label{eq:vc=3,014m/min} vc=3,014m/min \ n=11,998min^{-1} \ fz=0.107mm/tooth \ vf=7,680mm/min \ Wet$

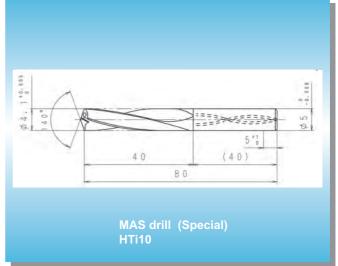
OP.2 (Dowel location holes)

For machining centres

Tool features

Special MAS drill in HTi10 grade. Use of a double margin allows high precision drilling.

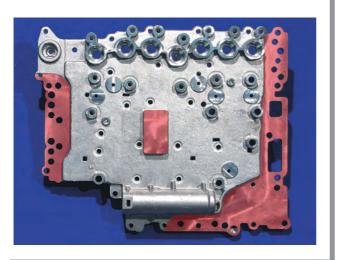

Cutting conditions


vc=100m/min n=5,263min⁻¹ fr=0.07mm/rev vf=368mm/min Wet

Tooling Sheet 2

OP.3 (Locating holes)

For machining centres


Tool features

Special MAS drill in HTi10 grade.
Use of a double margin allows high precision drilling.

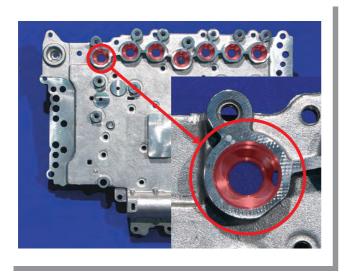
Cutting conditions

vc=100m/min n=7,768min $^{-1}$ fr=0.05mm/rev vf=388mm/min Wet

OP.4 (Rough milling of the case mounting face) For machining centres

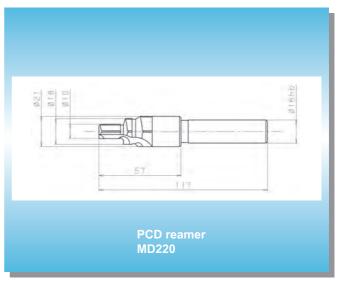
Tool features

Standard BXD type cutter with TF15 inserts. Specially designed G-class inserts for excellent wall accuracy.


Cutting conditions

vc=1,507m/min n=11,998min⁻¹ fz=0.023mm/tooth vf=840mm/min ap=0.3mm Wet

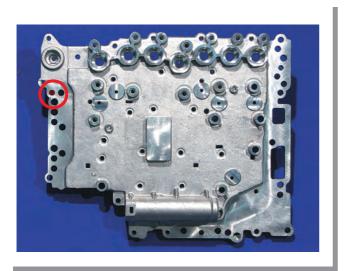
Tooling Sheet 4

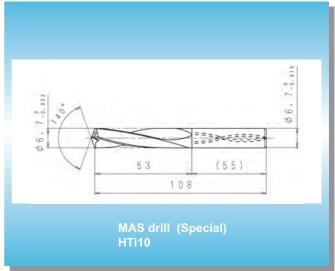

OP.5 (Solenoid holes)

For machining centres

Tool features

Special PCD reamer in MD220 grade.
Use of MD220 cutting edge with high welding resistance.

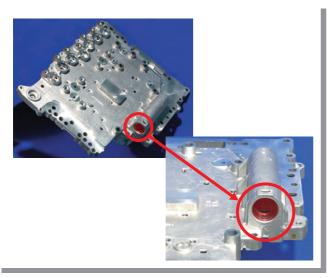

Cutting conditions

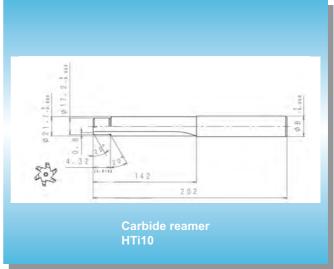

vc=79m/min n=2,516min $^{\text{-}1}$ fr=0.06mm/rev vf=150mm/min Wet

OP.6 (Dowel location holes)

For machining centres

Tool features


Special MAS drill in HTi10 grade.
Use of a double margin allows high precision drilling.

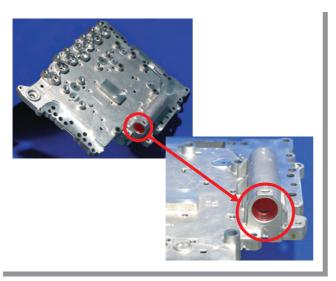

Cutting conditions

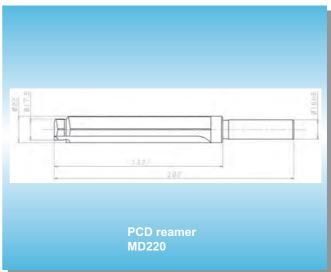
vc=100m/min n=4,753min $^{\text{-}1}$ fr=0.07mm/rev vf=332mm/min Wet

Tooling Sheet 6

OP.7 (Roughing of the accumulator bore) For machining centres

Tool features


Special carbide reamer in HTi10 grade. The 6-flute cutting edge enables high performance machining. Straight flute for easy re-grinding.

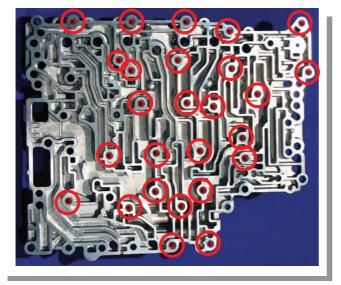

Cutting conditions

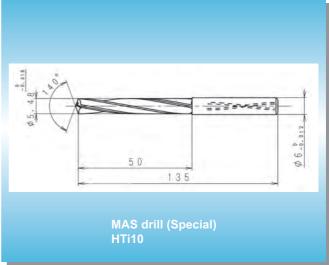
vc=100m/min n=1,852min $^{\text{-1}}$ fz=0.05mm/tooth vf=555mm/min Wet

OP.8 (Finishing of the accumulator bore)

For machining centres

Tool features


Special PCD reamer in MD220 grade. Use of MD220 (PCD) cutting edge with high welding resistance. The single-flute cutting edge improves run-out accuracy leading to better surface finishes and higher hole roundness accuracy.


Cutting conditions

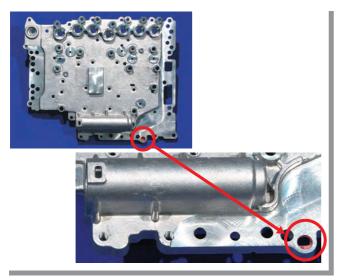
vc=200m/min n=3,640min $^{\text{-1}}$ fr=0.07mm/rev vf=255mm/min Wet

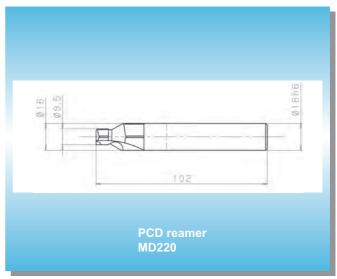
Tooling Sheet 8

OP.9 (Pre-drilling of tap holes) For machining centres

Tool features

Special MAS drill in HTi10 grade. Use of a double margin enables high precision stable pre-hole drilling for rolled tap.


Cutting conditions

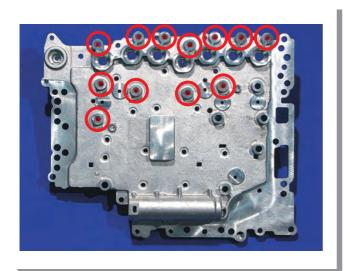

vc=100m/min n=5,812min $^{\text{-1}}$ fr=0.10mm/rev vf=581mm/min Wet

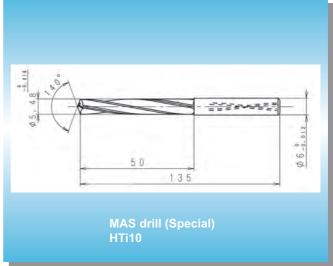
OP.10 (Drain holes)

For machining centres

Tool features

Special PCD reamer in MD220 grade. Use of MD220 cutting edge with high welding resistance.


Cutting conditions

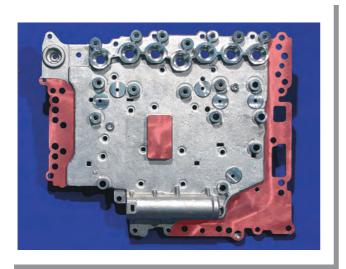

vc=113m/min n=3,788min $^{\text{-}1}$ fr=0.082mm/rev vf=310mm/min Wet

Tooling Sheet 10

OP.11 (Pre-driling of tap holes for the solenoid & oil pressure switch)

For machining centres

Tool features


Special MAS drill in HTi10 grade. Use of a double margin enables high precision stable pre-hole drilling for rolled tap.

Cutting conditions

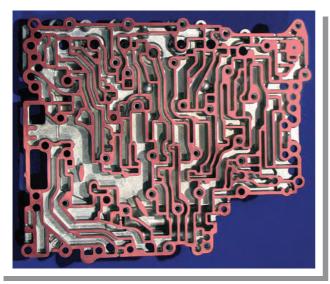
vc=100m/min n=5,812min $^{\text{-1}}$ fr=0.10mm/rev vf=581mm/min Wet

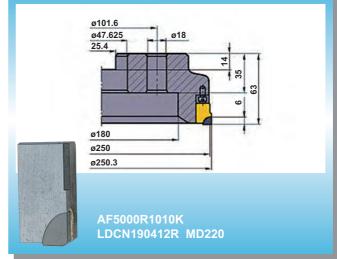
OP.12 (Finish milling of the case mounting face)

For machining centres

Tool features

Standard BXD type cutter with TF15 inserts. Specially designed G-class inserts for excellent wall accuracy.


Cutting conditions

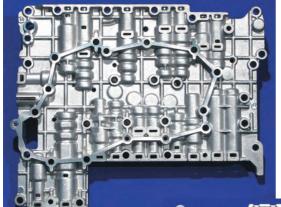

vc=1,507m/min n=11,998min⁻¹ fz=0.02mm/tooth vf=720mm/min ap=0.3mm Wet

Tooling Sheet 12

OP.13 (Finish milling the circuit surface)

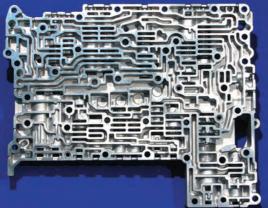
For machining centres

Tool features

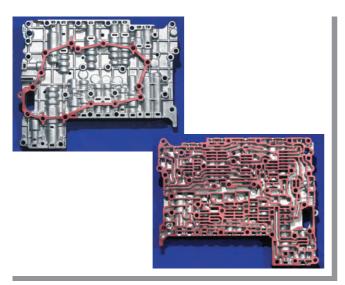

Standard AF5000 type cutter with MD220 inserts. CBN inserts are available for use instead of PCD inserts to machine other materials than aluminum alloy.

Cutting conditions

vc=2,000m/min n=2,548min $^{\text{-1}}$ fz=0.05mm/tooth vf=1,274mm/min ap=0.4mm Wet


Valve body lower side

Main machining


- **①Circuit face**
- **2Various holes**

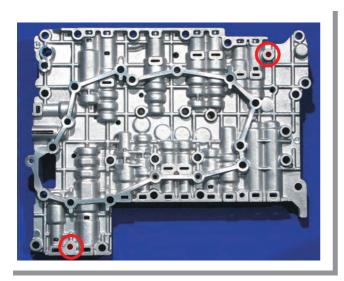
Work material: ADC12

Machining methods
Milling
Drilling

OP.1 (Roughing of the circuit & oil strainer surface) For machining centres

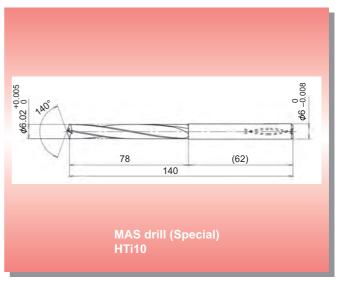
Tool features

Standard NR10000 type cutter with MD220 inserts. Roughing cutter with high wear and weld resistant MD220 (PCD) inserts for high speed machining. Chamfer honed main cutting edges increases cutting edge strength.



Cutting conditions

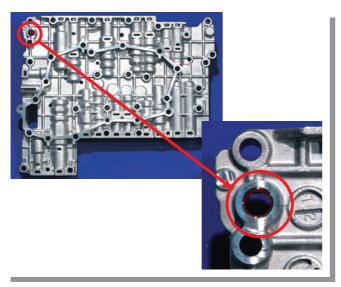
vc=3,014m/min n=11,998min⁻¹ fz=0.067mm/tooth vf=4,800mm/min Wet


OP.2 (Locating holes)

For machining centres

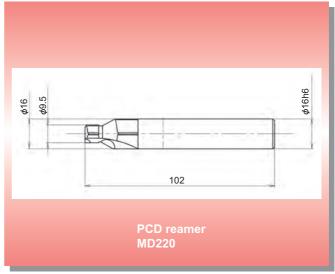
Tool features

Special MAS drill in HTi10 grade.
Use of a double margin enables high precision drilling.


Cutting conditions

vc=100m/min n=5,290min $^{\text{-}1}$ fr=0.07mm/rev vf=370mm/min Wet

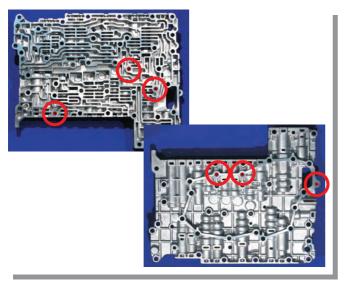
Tooling Sheet 2

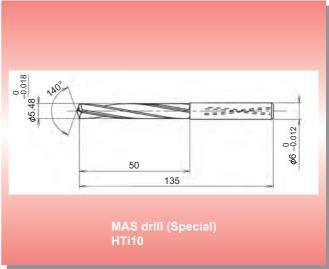

OP.3 (Sensor hole)

For machining centres

Tool features

Special PCD reamer in MD220 grade. Use of MD220 (PCD) cutting edge with high welding resistance. Shortening the tool length as much as possible achieves high runout accuracy.

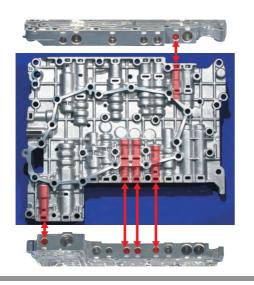


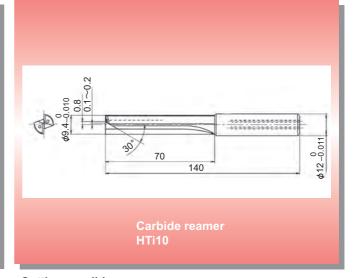

Cutting conditions

vc=113m/min n=3,788min $^{-1}$ fr=0.1mm/rev vf=380mm/min Wet

OP.4 T1 (Pre-drilling of the tap holes) For machining centres

Tool features

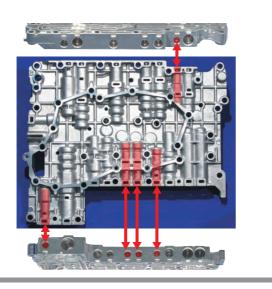

Special MAS drill in HTi10 grade. Use of a double margin enables high precision stable pre-hole drilling for rolled tap.


Cutting conditions

vc=100m/min n=5,812min $^{-1}$ fr=0.10mm/rev vf=581mm/min Wet

Tooling Sheet 4

OP.5 (①Roughing of the spool holes) For machining centres

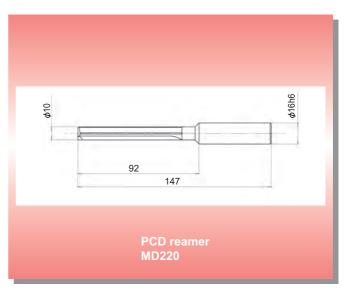

Tool features

Special carbide reamer in HTi10 grade. The 2-flute cutting edge allows good chip disposal. Straight flute for easy re-grinding.

Cutting conditions

vc=100m/min n=3,388min $^{\text{-1}}$ fz=0.10mm/tooh vf=678mm/min Wet

OP.6 (①Finishing of the spool holes) For machining centres

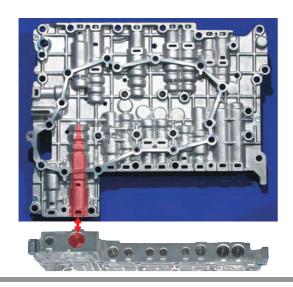


Tool features

Special PCD reamer in MD220 grade.

Use of MD220 (PCD) cutting edge with high welding resistance.

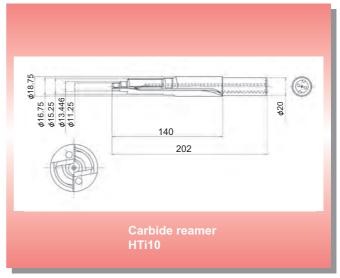
The 2-flute cutting edge with good chip disposal properties allows highly efficient machining.



Cutting conditions

vc=184m/min n=5,860min $^{\text{-1}}$ fr=0.14mm/rev vf=820mm/min Wet

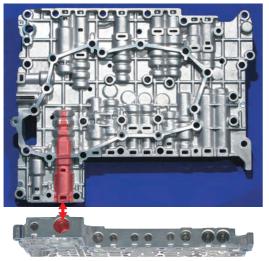
Tooling Sheet 6


OP.7 (②Roughing of the spool holes) For machining centres

Tool features

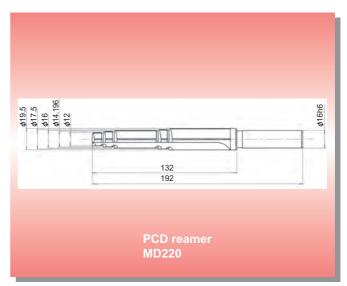
Special solid carbide multi-step reamer in HTi10 grade. For roughing of 5 stepped holes.

The single-flute cutting edge improves run-out accuracy leading to better surface finishes and higher hole roundness accuracy.



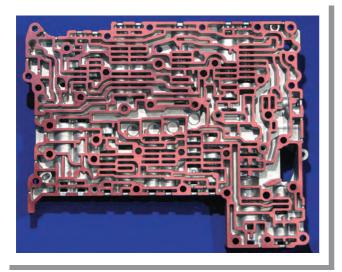
Cutting conditions

vc=100m/min n=2,830min $^{\text{-1}}$ fr=0.05mm/rev vf=142mm/min Wet


OP.8 (②Finishing of the spool holes) For machining centres

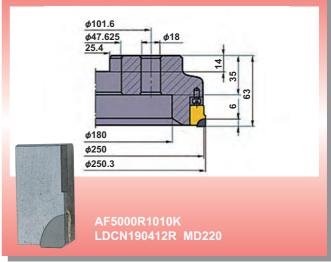
Special PCD multi-step reamer in MD220 grade. Use of MD220 (PCD) cutting edge with high welding resistance.

The single-flute cutting edge improves run-out accuracy leading to better surface finishes and higher hole roundness accuracy.



Cutting conditions

vc=113m/min n=3,005min $^{\text{-}1}$ fr=0.07mm/rev vf=210mm/min Wet


Tooling Sheet 8

OP.9 (Finish milling of the circuit surface) For machining centres

Tool features

Standard AF5000 type cutter with MD220 inserts. CBN inserts are available for use instead of PCD inserts to machine other materials than aluminum alloy.

Cutting conditions

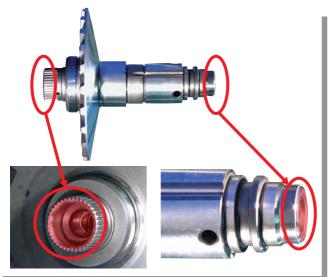
vc=2,512m/min n=3,200min⁻¹ fz=0.05mm/tooth vf=1,920mm/min ap=0.4mm Wet

CVT pulley Primary FIX

Main machining

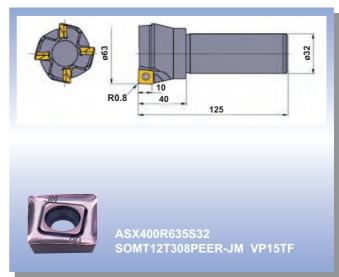
- **①External turning**
- **2Sheave surface**
- **3Boring**

Machining methods


Turning

Milling

Drilling

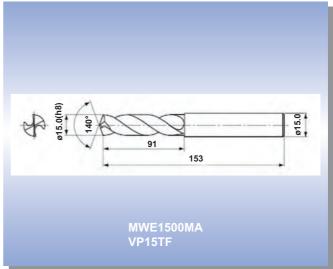

Boring

OP.1 (Milling of both end faces) For machining centres

Tool features

Standard ASX400 type cutter with VP15TF inserts. The body is made from a special alloy steel that provides high heat resistance and excellent durability. Use of screw-on type inserts for easy and high accuracy clamping. Use of a general-purpose JM breaker.

Cutting conditions


vc=150m/min n=758min⁻¹ fz=0.20mm/tooth vf=606mm/min ap=1mm Wet

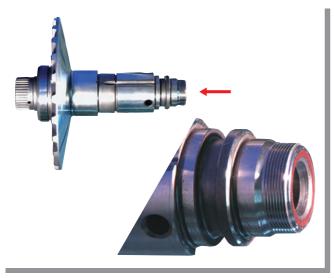
OP.2 (Drilling of the FR hole)

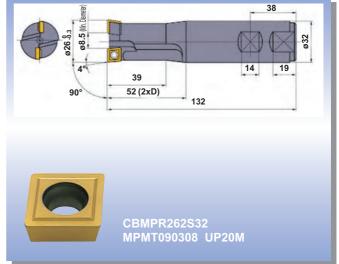
For machining centres

Tool features

Standard WSTAR drill.

Use of a wavy cutting edge and special flute geometry with superior chip disposal properties reduces the cutting resistance. High precision, stable machining.

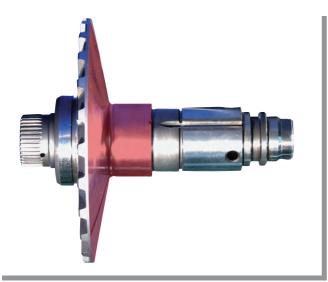

Cutting conditions

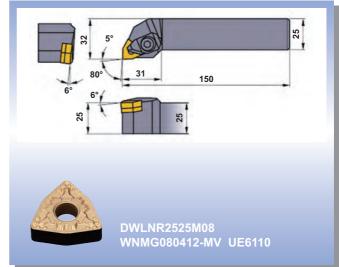

vc=120m/min n=2,548min⁻¹ fr=0.13mm/rev vf=331m/min ld=34mm Wet

Tooling Sheet 2

OP.3 (Spot facing of the RR side)

For machining centres


Tool features


Standard CBMPR type cutter with UP20 inserts. Good chip control and high cutting edge strength.

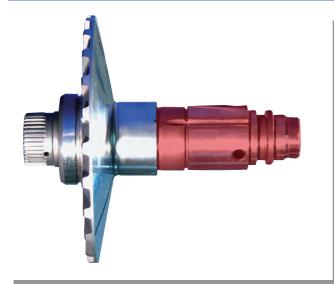
Cutting conditions

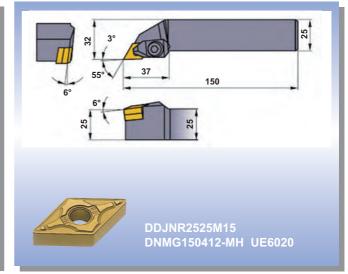
vc=100m/min n=1,224min⁻¹ fr=0.05mm/rev vf=122mm/min ld=3mm Wet

OP.4 (Rough turning of the outer diameter and sheave surface) For CNC lathes

Tool features

Standard holder with UE6110 inserts.


The UE6110 steel turning grade with a nano-texture coating provides excellent balance of wear and fracture resistance. The MV breaker gives effective chip control in the light to medium cutting application areas.


Cutting conditions

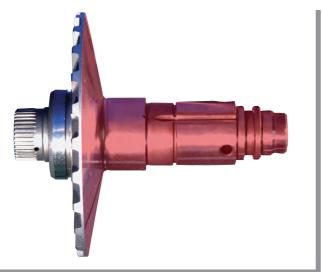
vc=194~275m/min n=500~1,000min⁻¹ fr=0.55mm/rev ap=1.5mm Wet

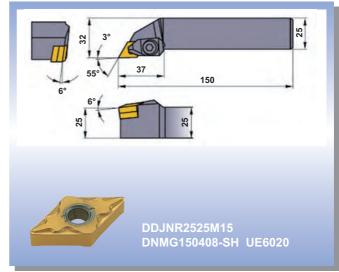
Tooling Sheet 4

OP.5 (Rough external turning of the shaft) For CNC lathes

Tool features

Standard holder with UE6020 inserts.

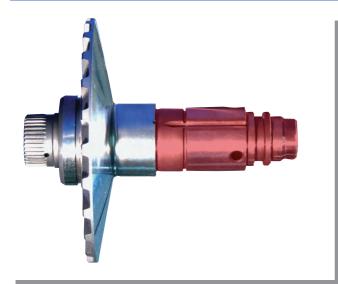

The highly reliable UE6020 grade employs Even Coating Technology to deliver higher welding and fracture resistance. The MH breaker with a flat land gives high cutting edge strength, ensuring high stability during interrupted machining.

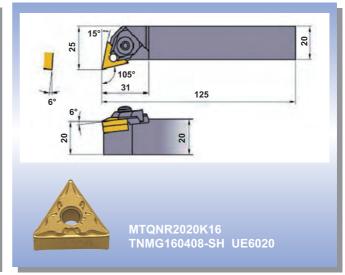

Cutting conditions

vc=148~240m/min n=1,450min⁻¹ fr=0.35mm/rev ap=1.5mm Wet

OP.6 (Semi-finishing the shaft and finishing the sheave surface) For CNC lathes

Tool features


Standard holder with UE6020 inserts. The highly reliable UE6020 grade employs Even Coating Technology to deliver higher welding and fracture resistance. The SH breaker featuring the curved edge gives sharp cutting action.


Cutting conditions

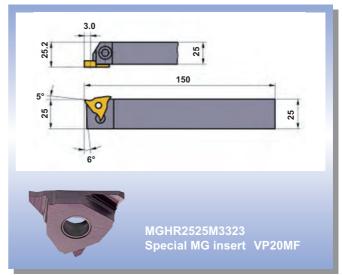
vc=250m/min fr=0.35mm/rev ap=0.4mm Wet

Tooling Sheet 6

OP.7 (Finishing of the shaft outer diameter) For CNC lathes

Tool features

Standard holder with UE6020 inserts. The highly reliable UE6020 grade employs Even Coating Technology to deliver higher welding and fracture resistance. The SH breaker featuring the curved edge gives sharp cutting action.


Cutting conditions

vc=204 \sim 332m/min n=2,000min $^{\text{-}1}$ fr=0.35mm/rev ap=0.4mm Wet

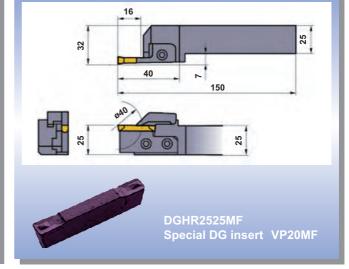
OP.8 (Snap ring groove)

For CNC lathes

Tool features

Standard holder with special VP20MF inserts. The VP20MF grade uses a micro-grain cemented carbide substrate. Superior wear and fracture resistance and long tool life.

Cutting conditions


vc=145~130m/min fr=0.1mm/rev ap=2.2mm W=1.73mm Wet

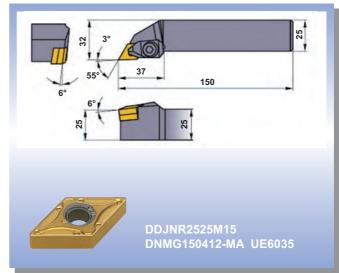
Tooling Sheet 8

OP.9 (C-ring groove)

For CNC lathes

Tool features

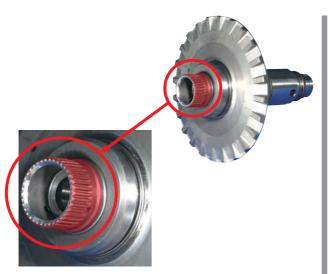
Standard holder with special VP20MF inserts. The VP20MF grade uses a micro-grain cemented carbide substrate. Superior wear and fracture resistance and long tool life.

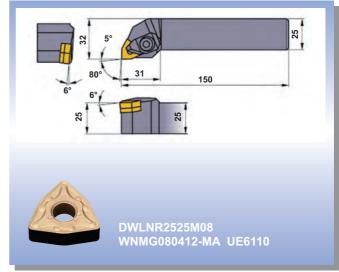

Cutting conditions

vc=79 \sim 65m/min fr=0.13mm/rev ap=3.7mm W=5.27mm Wet

OP.10 (Roughing of the sensor end face) For CNC lathes

Tool features


Standard holder with UE6035 inserts.
The UE6035 grade ensures higher fracture resistance during interrupted machining.
General-purpose MA breaker.

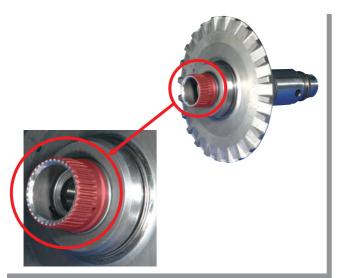

Cutting conditions

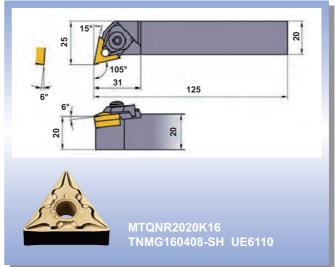
vc=160m/min fr=0.2mm/rev ap=1.1mm Wet

Tooling Sheet 10

OP.11 (Rough external turning and facing of the spline shaft) For CNC lathes

Tool features


Standard holder with UE6110 inserts.
The UE6110 steel turning grade with a nano-texture coating provides excellent balance of wear and fracture resistance.
General-purpose MA breaker.


Cutting conditions

vc=140m/min fr=0.55mm/rev ap=0.9mm Wet

OP.12 (Finish external turning and facing of the spline shaft)

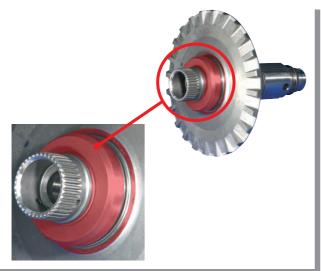
For CNC lathes

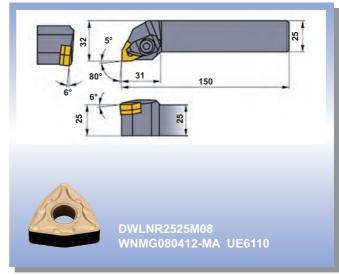
Tool features

cutting action.

Standard holder with UE6110 inserts.

The UE6110 steel turning grade with a nano-texture coating provides excellent balance of wear and fracture resistance.


The SH breaker featuring the curved edge gives sharp


Cutting conditions

n=2,000m/min⁻¹ fr=0.2mm/rev ap=0.8mm Wet

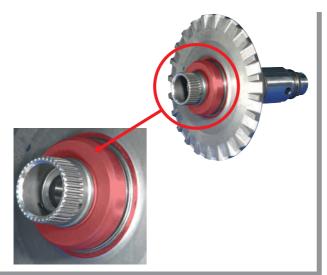
Tooling Sheet 12

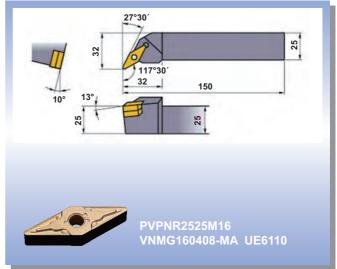
OP.13 (Rough external turning and facing) For CNC lathes

Tool features

Standard holder with UE6110 inserts.

The UE6110 steel turning grade with a nano-texture coating provides excellent balance of wear and fracture resistance. General-purpose MA breaker.


Cutting conditions


vc=300m/min fr=0.26mm/rev ap=2.2mm Wet

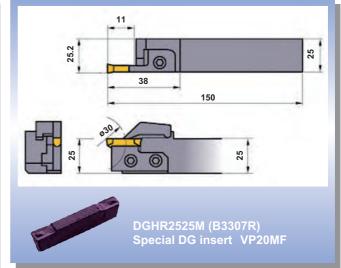
OP.14 (Finish external turning and facing)

For CNC lathes

Tool features

Standard holder with UE6110 inserts.
The UE6110 steel turning grade with a nano-texture coating provides excellent balance of wear and fracture resistance.
General-purpose MA breaker.

Cutting conditions


n=2,000min-1 fr=0.2mm/rev ap=0.25mm Wet

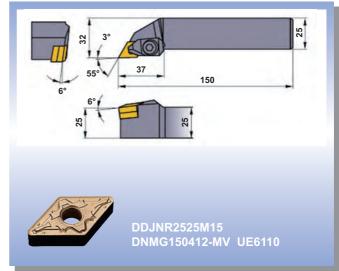
Tooling Sheet 14

OP.15 (Circlip groove)

For CNC lathes

Tool features

Standard holder with special VP20MF inserts. The VP20MF grade uses a micro-grain cemented carbide substrate. Superior wear and fracture resistance and long tool life.


Cutting conditions

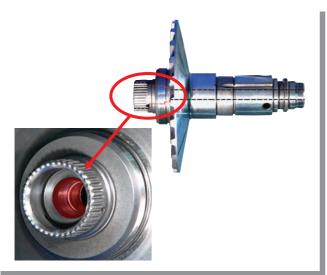
vc=205~191m/min n=1,000min⁻¹ fr=0.1mm/rev ap=1.9mm Wet

OP.16 (Finish facing of the sensor)

For CNC lathes

Tool features

Standard holder with UE6110 inserts.


The UE6110 steel turning grade with a nano-texture coating provides excellent balance of wear and fracture resistance. The MV breaker gives effective chip control in the light to medium cutting application areas.

Cutting conditions

vc=280m/min fr=0.15mm/rev ap=0.4mm Wet

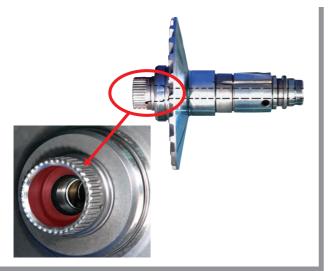
Tooling Sheet 16

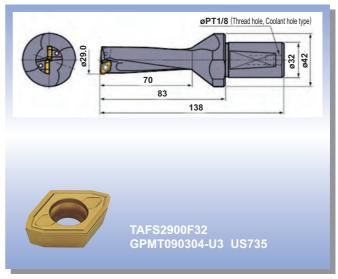
OP.17 (Semi-finishing of the bush press-fit diameter) For CNC lathes

Tool features

Standard boring bar with VP15TF inserts.

The VP15TF uses a micro-grain cemented carbide substrate. Eexcellent balance of wear and fracture resistance. The MV breaker gives effective chip control in the light to medium cutting application areas.

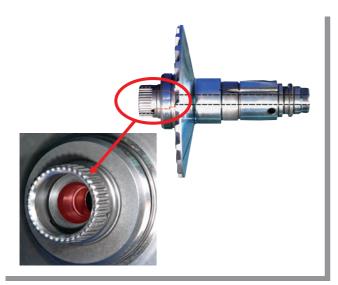

Cutting conditions

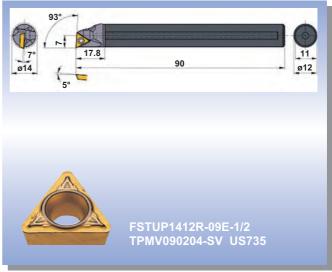

n=2,000min⁻¹ fr=0.24mm/rev ap=0.6mm Wet

OP.18 (Rough boring)

For CNC lathes

Tool features


Standard TAF drill with US735 inserts. Highly durable body with high insert seat rigidity. Economical 4 cutting edge type inserts.

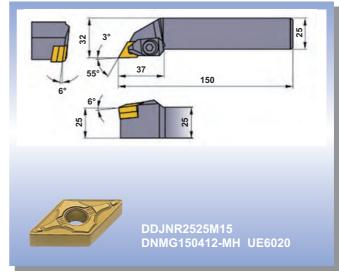

Cutting conditions

vc=123m/min n=1,350min $^{-1}$ fr=0.15mm/rev ld=19.5mm Wet

Tooling Sheet 18

OP.19 (Finishing of the bush press-fit diameter) For CNC lathes

Tool features


Standard boring bar with US735 inserts.
US735 with high welding resistance helps prevent abnormal wear at medium to low speed, interrupted cutting.
Use of the finishing type SV breaker.

Cutting conditions

vc=155m/min fr=0.3mm/rev ap=0.17mm Wet

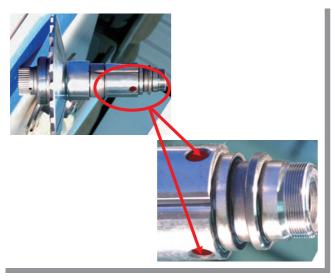
OP.20 (Finishing of the sensor surface) For CNC lathes

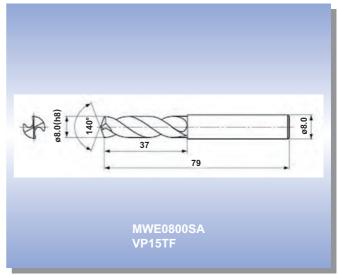
Tool features

Standard holder with UE6020 inserts.

The highly reliable UE6020 grade employs Even Coating Technology to deliver higher welding and fracture resistance.

Use of the MH breaker with a tougher cutting edge.


Cutting conditions


vc=280m/min fr=0.15mm/rev ap=0.4mm Wet

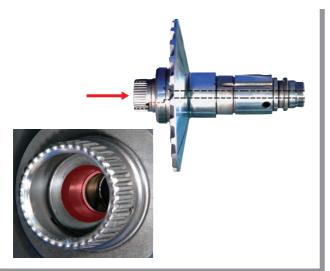
Tooling Sheet 20

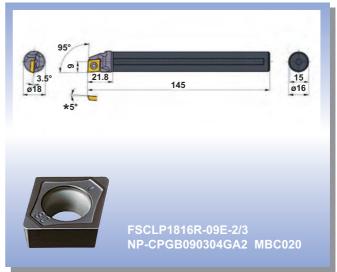
OP.21 (Slide circuit holes)

For machining centres

Tool features

Standard WSTAR drill.


The use of a wavy cutting edge and special flute geometry with superior chip disposal reduces the cutting resistance. High precision, stable machining.


Cutting conditions

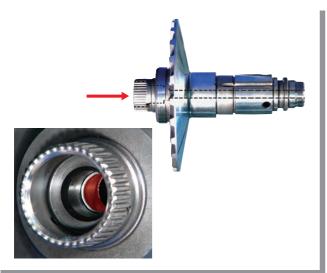
vc=150m/min n=6,000min $^{\text{-}1}$ fr=0.24mm/rev vf=1440mm/min Wet

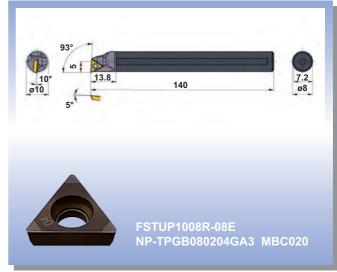
OP.22 (Boring).....After heat treating For CNC lathes

Tool features

Standard boring bar with MBC020 inserts.

MBC020 is a MIRACLE coated CBN grade.

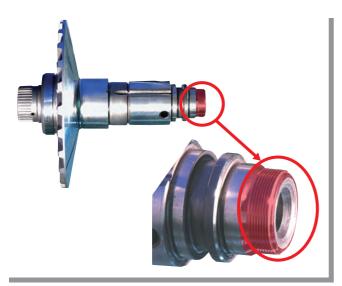

The combination of a high rigidity CBN substrate with a coating for higher wear resistance allows MBC020 to cover a wide range of machining applications.

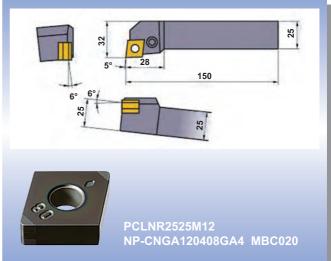

Cutting conditions

vc=150m/min fr=0.08mm/rev ap=0.1mm Wet

Tooling Sheet 22

OP.23 (Boring of the bush).....After heat treating For CNC lathes



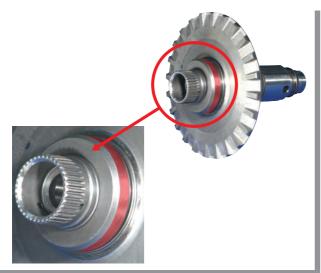

Tool features

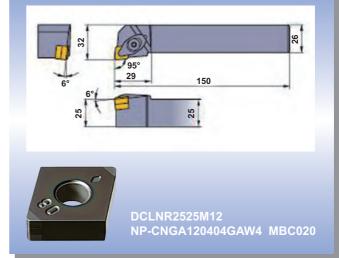
Standard boring bar with MBC020 inserts.
MBC020 is a MIRACLE coated CBN grade.
The combination of a high rigidity CBN substrate with a coating for higher wear resistance allows MBC020 to cover a wide range of machining applications.
Use of the optimum GA type honing.

Cutting conditions

vc=120m/min fr=0.06mm/rev ap=0.25mm Wet

Tool features


Standard holder with MBC020 inserts. MBC020 is a MIRACLE coated CBN grade. The combination of a high rigidity CBN substrate with a coating for higher wear resistance allows MBC020 to cover a wide range of machining applications. Use of cost effective, double sided, multi-corner type inserts.

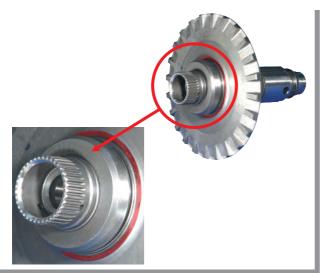

Cutting conditions

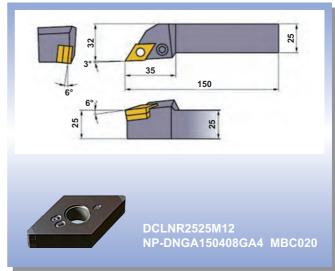
vc=120m/min f=0.15mm/rev ap=1.0mm Wet

Tooling Sheet 24

OP.25 (Finishing the press-fit diameter).....After heat treatment For CNC lathes

Tool features


Standard holder with MBC020 inserts. MBC020 is a MIRACLE coated CBN grade. The combination of a high rigidity CBN substrate with a coating for higher wear resistance allows MBC020 to cover a wide range of machining applications. Use of wiper inserts balances high machining efficiency and good surface finishes.


Cutting conditions

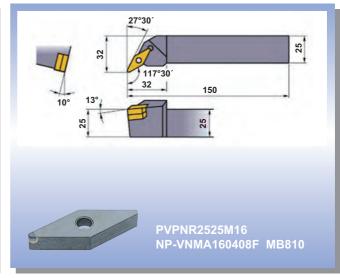
vc=150m/min fr=0.25mm/rev ap=0.04mm Wet

OP.26 (Finishing the press-fit diameter).....After heat treatment For CNC lathes

Tool features

Standard holder with MBC020 inserts.

MBC020 is a MIRACLE coated CBN grade. The combination of a high rigidity CBN substrate with a coating for higher wear resistance allows MBC020 to cover a wide range of machining applications. Use of cost effective, double sided, multi-corner type inserts.


Cutting conditions

vc=130m/min f=0.1mm/rev ap=0.1mm Wet

Tooling Sheet 26

OP.27 (Sheave surface).....After heat treatment For CNC lathes

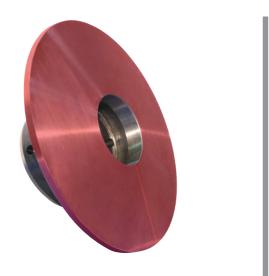
Tool features

Standard holder with MB810 inserts.
MB810 is a non-coated CBN grade.
High performance grade for high speed continuous machining. Use of the optimum GA type honing.

Cutting conditions

vc=100m/min fr=0.22mm/rev ap=0.05mm Wet

CVT pulley Primary SLID

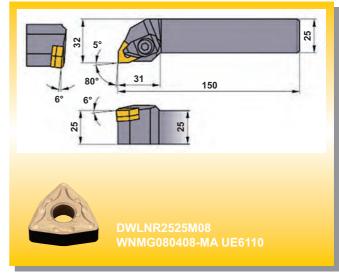


Work material: SCr420H

- Main machining
- **①External turning**
- **2**Sheave surface
- **3Boring**

Machining methods
Turning
Boring

OP.1 (Rough external turning and facing) For CNC lathes

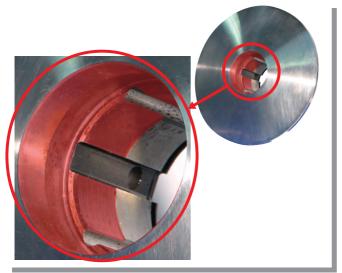


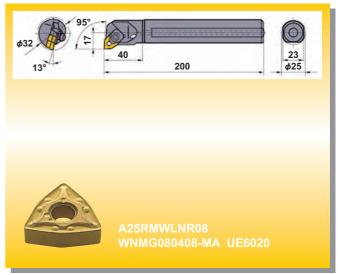
Tool features

Standard holder with UE6110 inserts.

The UE6110 grade for steel turning uses a nano-texture coating to provide excellent balance of wear and fracture resistance.

General-purpose MA breaker.


Cutting conditions


vc=190m/min fr=0.45mm/rev ap=1mm Wet

OP.2 (Rough boring)

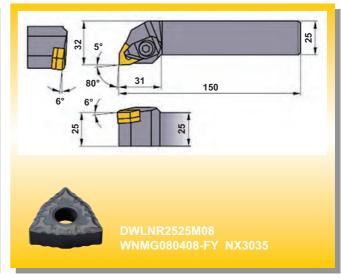
For CNC lathes

Tool features

Standard holder with UE6020 inserts.

The UE6020 grade uses Even Coating Technology to provide exceptional welding and fracture resistance with a highly reliable cutting edge.

General-purpose MA breaker.


Cutting conditions

vc=180m/min fr=0.45mm/rev ap=1.5mm Wet

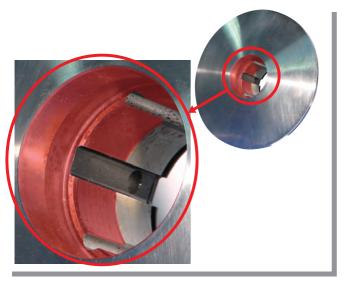
Tooling Sheet 2

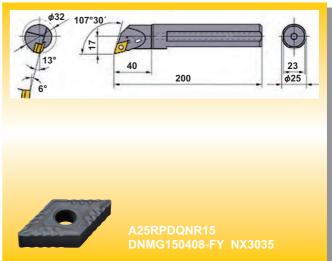
OP.3 (Finish external turning and facing) For CNC lathes

Tool features

Standard holder with NX3035 inserts.

NX3035 is a cermet grade with highly improved thermal shock resistance. Offers highly stable cutting edge performance even during wet cutting conditions that usually cause instability in conventional grades.


Finishing type FV breaker.


Cutting conditions

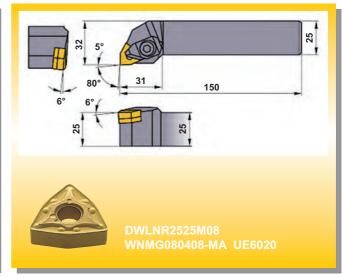
vc=280m/min fr=0.45mm/rev ap=0.5mm Wet

OP.4 (Finish boring)

For CNC lathes

Tool features

Standard holder with NX3035 inserts.
NX3035 is a cermet grade with highly improved thermal shock resistance. Offers highly stable cutting edge performance even during wet cutting conditions that usually cause instability in conventional grades.
Finishing type FV breaker.


Cutting conditions

vc=220m/min fr=0.35mm/rev ap=0.4mm Wet

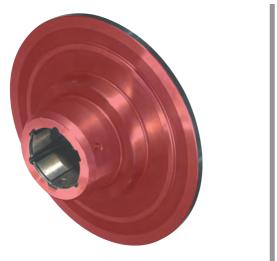
Tooling Sheet 4

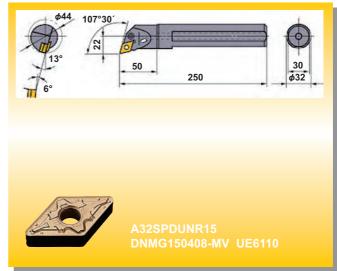
OP.5 (Rough external turning and facing) For CNC lathes

Tool features

Standard holder with UE6020 inserts.

The UE6020 grade uses Even Coating Technology to provide exceptional welding and fracture resistance with a highly reliable cutting edge.


General-purpose MA breaker.


Cutting conditions

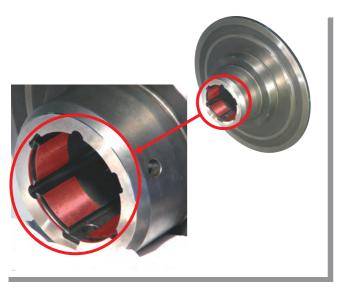
vc=180m/min fr=0.5mm/rev ap=1mm Wet

OP.6 (Finish external turning and facing) For CNC lathes

Tool features

Standard holder with UE6110 inserts.

The UE6110 steel turning grade with a nano-texture coating provides excellent balance of wear and fracture resistance. The MV breaker gives effective chip control in the light to medium cutting application areas.


Cutting conditions

vc=320m/min fr=0.35mm/rev ap=0.5mm Wet

Tooling Sheet 6

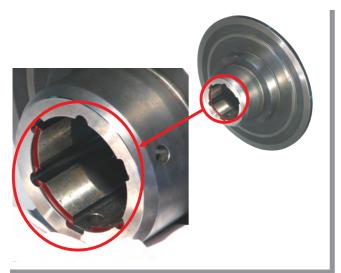
OP.7 (Finish boring)

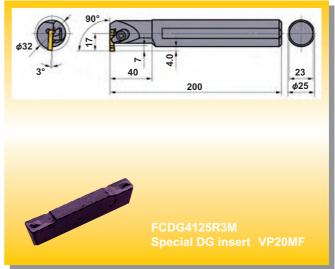
For CNC lathes

Tool features

Standard holder with NX3035 inserts.

NX3035 is a cermet grade with highly improved thermal shock resistance. Offers highly stable cutting edge performance even during wet cutting conditions that usually cause instability in conventional grades.


Finishing type FV breaker.


Cutting conditions

vc=250m/min fr=0.2mm/rev ap=0.2mm Wet

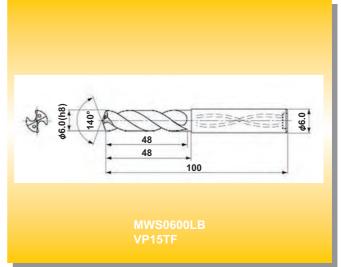
OP.8 (Internal grooving)

For CNC lathes

Tool features

Standard holder with special VP20MF inserts. The VP20MF grade uses a micro-grain cemented carbide substrate. Superior wear and fracture resistance and long tool life.

Cutting conditions


vc=150m/min fr=0.1mm/rev ap=1mm W=1.75mm
Wet

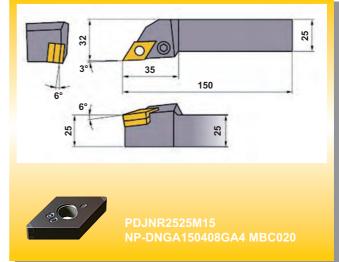
Tooling Sheet 8

OP.9 (Oil holes)

For machining centres

Tool features

Standard holder with special VP20MF inserts.
The VP20MF grade uses a micro-grain cemented carbide substrate. Superior wear and fracture resistance and long tool life.


Cutting conditions

vc=150m/min n=7,960min $^{\text{-1}}$ fr=0.2mm/rev vf=1,600mm/min Wet

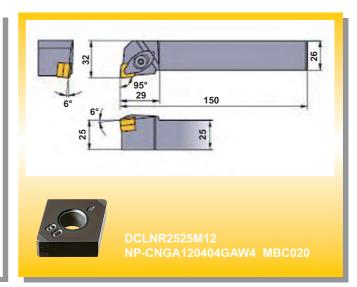
OP.10 (Rough external turning and facing)......After heat treatment For CNC lathes

Tool features

Standard holder with MBC020 inserts.

MBC020 is a MIRACLE coated CBN grade. The combination of a high rigidity CBN substrate with a coating for higher wear resistance allows MBC020 to cover a wide range of machining applications.

Use of cost effective, double sided, multi-corner type inserts.

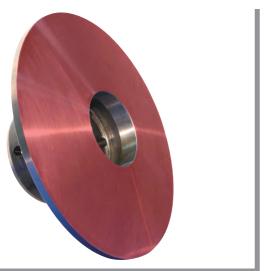

Cutting conditions

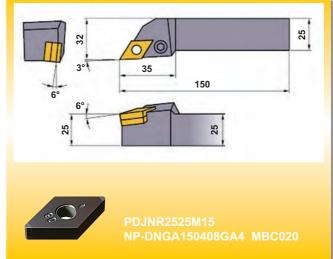
vc=150m/min f=0.22mm/rev ap=0.2mm Wet

Tooling Sheet 10

OP.11 (Finish external turning and facing)......After heat treatment For CNC lathes

Tool features


Standard holder with MBC020 inserts.


MBC020 is a MIRACLE coated CBN grade. The combination of a high rigidity CBN substrate with a coating for higher wear resistance allows MBC020 to cover a wide range of machining applications. Use of wiper inserts balances high machining efficiency and good surface finishes.

Cutting conditions

vc=140m/min f=0.2mm/rev ap=0.2mm Wet

OP.12 (Sheave surface)......After heat treatment For CNC lathes

Tool features

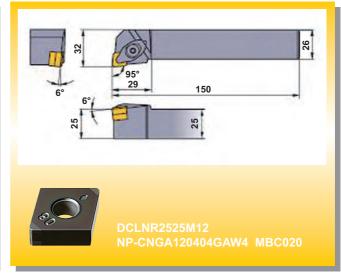
Standard holder with MBC020 inserts.


MBC020 is a MIRACLE coated CBN grade. The combination of a high rigidity CBN substrate with a coating for higher wear resistance allows MBC020 to cover a wide range of machining applications. Use of cost effective, double sided, multi-corner type inserts.

Cutting conditions

vc=150m/min f=0.2mm/rev ap=0.2mm Wet

Tooling Sheet 12


OP.13 (Finishing sensor end face).....After heat treatment For CNC lathes

Tool features

Standard holder with MBC020 inserts.

MBC020 is a MIRACLE coated CBN grade. The combination of a high rigidity CBN substrate with a coating for higher wear resistance allows MBC020 to cover a wide range of machining applications. Use of wiper inserts balances high machining efficiency and good surface finishes.

Cutting conditions

vc=150m/min f=0.2mm/rev ap=0.1mm Wet

Epicyclic carriers

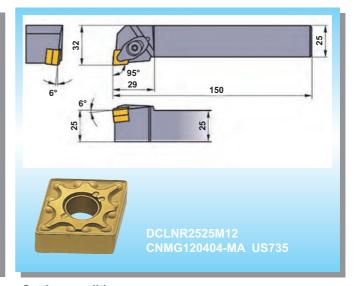
Main machining

- **①External turning, facing**
- **2**Boring
- **3Drilling**

Machining methods
Turning
Drilling

Work material: S25C

OP.1 (Facing)

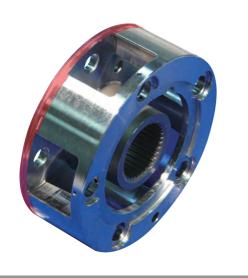

Tool features

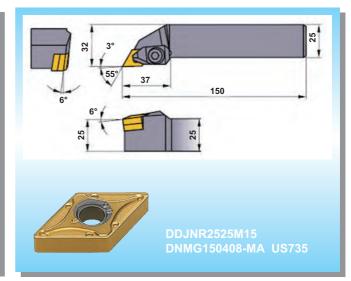
Standard holder with US735 inserts.

The US735 grade helps prevent welding problems during low speed cutting and abnormal wear problems and fracturing of cutting edges at medium to low speed, interrupted cutting.

General-purpose MA breaker.

For machining centres




Cutting conditions

vc=100m/min fr=0.2mm/rev ap=1.2mm Wet

OP.2 (Outer diameter)

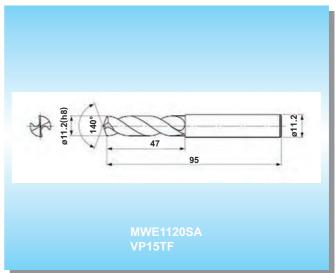
For machining centres

Tool features

Standard holder with US735 inserts.

The US735 grade helps prevent welding problems during low speed cutting and abnormal wear problems and fracturing of cutting edges at medium to low speed, interrupted cutting. General-purpose MA breaker.

Cutting conditions


vc=150m/min fr=0.1mm/rev ap=1.2mm Wet

Tooling Sheet 2

OP.3 (Pre-drilling of holes)

For machining centres

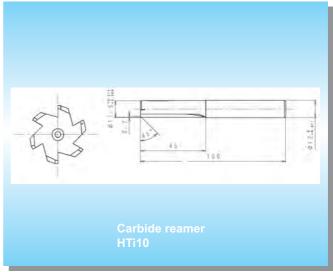
Tool features

Standard WSTAR drill.

Wave cutting edge gives a balance of edge strength and sharpness.

High precision, stable machining.

Cutting conditions

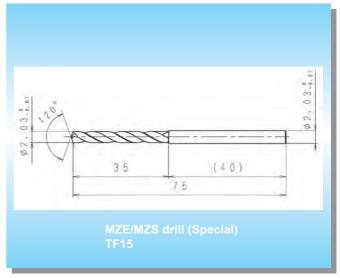

vc=60m/min n=1,706min $^{\text{-1}}$ fr=0.1mm/rev vf=170mm/min Wet

OP.4 (Finishing of holes)

For machining centres

Tool features

Special solid carbide reamer in HTi10 grade. 6-flute cutting edge enables high performance machining. Straight flute for easy re-grinding.


Cutting conditions

vc=40m/min n=1108min⁻¹ vf=220mm/min Wet

Tooling Sheet 4

OP.5 (Drilling of the pin holes) For machining centres

Tool features

Special MZE / MZS drill with through coolant holes in HTi10 grade. Step drill consolidates processes and reduces machining costs. (Non-coated MZE / MZS offers a sharp cutting edge geometry)

Cutting conditions

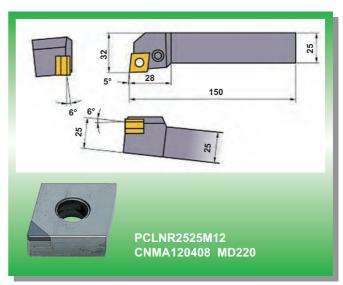
vc=30m/min n=4,700min⁻¹ vf=235mm/min Wet

Stators

Work material : ADC12

Main machining

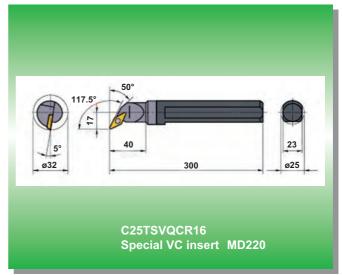
- **①External turning, facing**
- **②Boring**
- **3**Seat face
- **4**Drilling


Machining methods
Turning
Milling
Drilling

OP.1 (Turning of the outer diameter and facing of the RR side) For machining centres

Tool features

Standard holder with MD220 inserts.
Use of PCD inserts suitable for ultra high-speed machining of aluminum alloys.

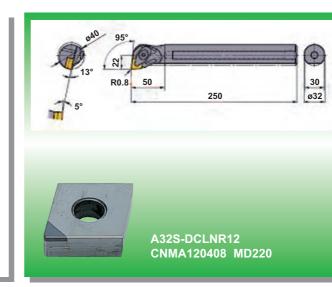

Cutting conditions

vc=1,064m/min fr=0.2mm/rev ap=1.2mm Wet

OP.2 (Boring of the inner diameter of the RR side) For machining centres

Tool features

Standard boring bar with special MD220 inserts. Use of PCD inserts suitable for ultra high-speed machining of aluminum alloys.

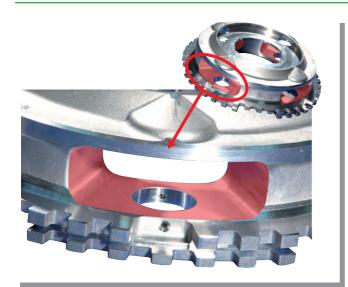

Cutting conditions

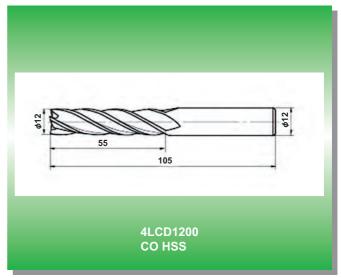
vc=405m/min fr=0.2mm/rev ap=1.0mm Wet

Tooling Sheet 2

OP.3 (Boring of the inner diameter and facing of the FR side) For machining centres

Tool features


Standard boring bar with special MD220 inserts.
Use of PCD inserts suitable for ultra high-speed machining of aluminum alloys.

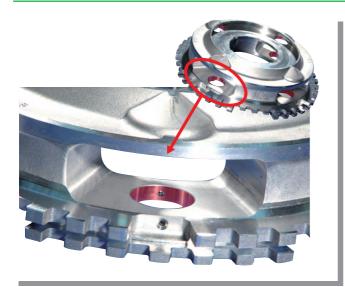

Cutting conditions

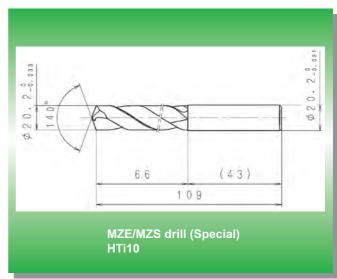
vc=561m/min fr=0.17mm/rev ap=1.0mm Wet

OP.4 (Pinion seat face)

For machining centres

Tool features


Standard 4-flute centre cutting end mill.
Suitable for deep slotting and finishing. Centre cutting type allows vertical feed milling.


Cutting conditions

vc=45.2m/min n=1,200min⁻¹ vf=480mm/min Wet

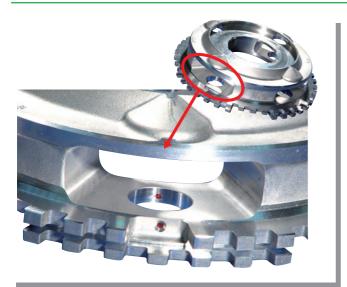
Tooling Sheet 4

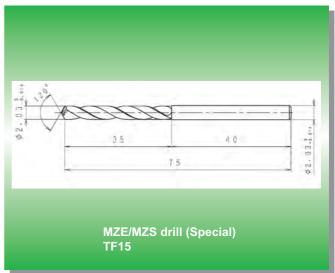
OP.5 (Drilling of the shaft holes) For machining centres

Tool features

Special MZE / MZS drill with through coolant holes in HTi10 grade.

Step drill consolidates processes and reduces machining costs.


(Non-coated MZE / MZS offers a sharp cutting edge geometry)


Cutting conditions

vc=120m/min n=1,898min⁻¹ fr=0.15mm/rev Wet

OP.6 (Drilling of the pin holes) For machining centres

Tool features

Special MZE / MZS drill with through coolant holes in HTi10 grade.

Step drill consolidates processes and reduces machining costs.

(Non-coated MZE / MZS offers a sharp cutting edge geometry)

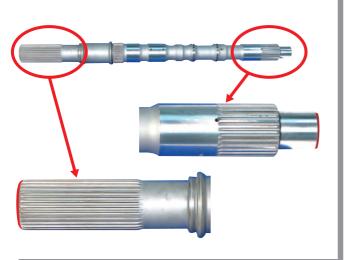
Cutting conditions

vc=29.5m/min n=4,628min⁻¹ fr=0.13mm/rev vf=611mm/min Wet

Output shafts

Main machining

- **①External turning, facing**
- 20il holes
- **3Grooving**


Work material : SCM420H

Machining methods

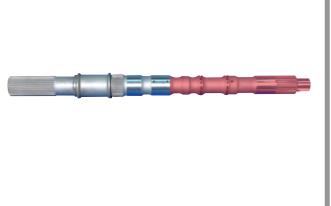
Turning Milling

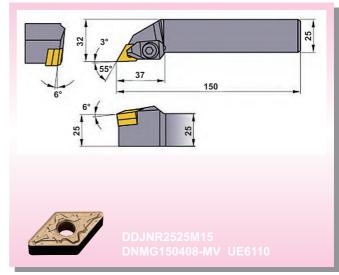

Drilling

OP.1 (Facing of the FR/RR faces) For machining centres

Tool features

Standard ASX445 type cutter with VP15TF inserts. The body is made from a special alloy steel that provides high heat resistance and excellent durability. Use of a screw-on type for easy and high accuracy insert clamping. General-purpose JM breaker.




Cutting conditions

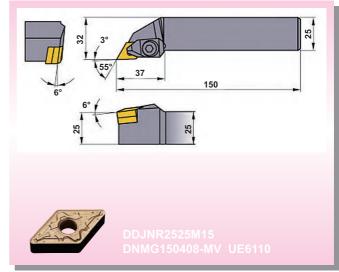
vc=110m/min n=350min⁻¹ fz=0.08mm/tooth vf=190mm/min ap=1.7mm Wet

OP.2 (External roughing of the FR side) For CNC lathes

Tool features

Standard holder with UE6110 inserts.

The UE6110 steel turning grade with a nano-texture coating provides excellent balance of wear and fracture resistance. The MV breaker gives effective chip control in the light to medium cutting application areas.


Cutting conditions

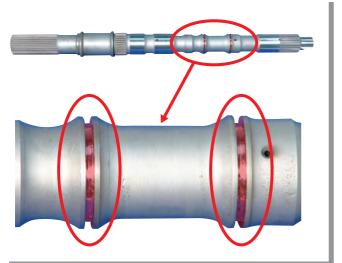
vc=220~140m/min fr=0.35mm/rev ap=1.7~2.0mm Wet

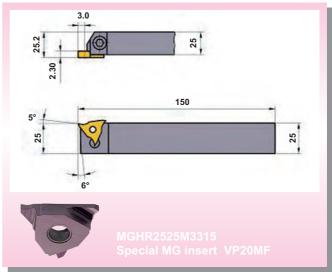
Tooling Sheet 2

OP.3 (External roughing of the RR side) For CNC lathes

Tool features

Standard holder with UE6110 inserts.


The UE6110 steel turning grade with a nano-texture coating provides excellent balance of wear and fracture resistance. The MV breaker gives effective chip control in the light to medium cutting application areas.


Cutting conditions

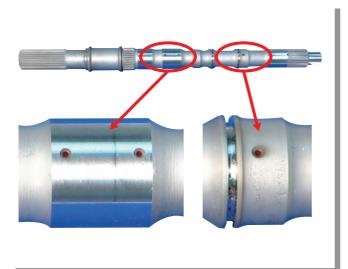
vc=270~170m/min fr=0.35mm/rev ap=1.7~2.0mm Wet

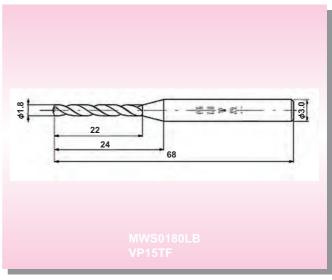
OP.4 (Grooving)

For CNC lathes

Tool features

Standard holder with special VP20MF inserts. The VP20MF grade uses a micro-grain cemented carbide substrate. Excellent wear and fracture resistance and long tool life.


Cutting conditions


vc=150~138m/min fr=0.1mm/rev ap=2.2mm W=2.15mm Wet

Tooling Sheet 4

OP.5 (Drilling of the oil holes)

For machining centres

Tool features

Standard WSTAR drill.

Wave cutting edge gives a balance of edge strength and sharpness.

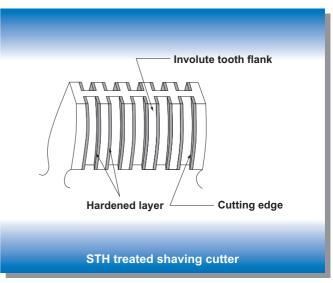
High precision, stable machining.

Cutting conditions

vc= 50m/min n=8,845min-1 fr=0.08mm/rev Wet

GEAR CUTTING

Location



Shaft shoulder gear

Tool features

Hardening only the serrated parts improves wear resistance without decreasing the toughness of the tool substrate. The surface hardened layer remains unremoved after being reground, allowing stable tool life.

Cutting conditions

vc=110m/min n=180min⁻¹ f=0.5mm/min T1=4,T2=4,T3=7(sec) BM=0.02mm Wet

Tooling Sheet 1

Variable land type shaving cutter

Location

Shaft shoulder gear

Tool features

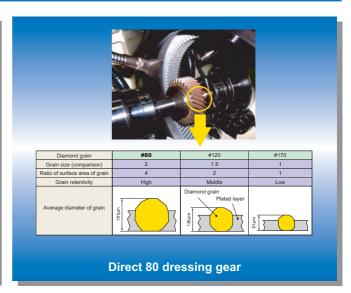
To avoid the tooth profile differences between the upper and lower position caused by irregular tooth engagement, the serration land width is varied in the tooth width direction.

Cutting conditions

vc=110m/min n=180min⁻¹ f=0.5mm/min T1=4,T2=4,T3=7(sec) BM=0.02mm Wet

Direct 80 dressing gear

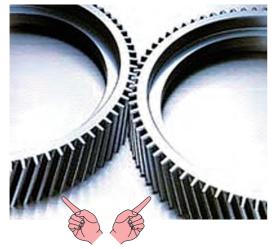
Location



Shaft shoulder gear

Tool features

Use of the #80 abrasive grain that has double the diameter and 4 times larger surface area than the #170 abrasive grain gives exceptional grain strength and retention force. A high precision electrodeposition technique and semi truing method are employed for superior tooth profile accuracy.


Cutting conditions (Dressing)

Feed rate=150mm/min Grinding wheel (N)=40min⁻¹ Feed length=±4mm Depth of cut/ST=0.003mm Veritical depth of cut=0.05mm

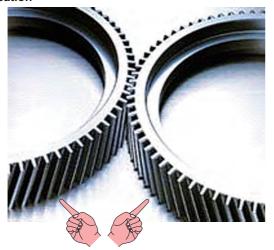
Tooling Sheet 3

Super Violet hob

Location

Tool features

Use of a new coating for higher heat and wear resistance. Double tool life compared to conventional types when machining at vc=150m/min.Possible to machine at vc=250m/min, which was previously difficult to perform in actual machining.



Cutting conditions

vc=150m/min n=530min⁻¹ f=2.0mm/rev Dry vc= 200,250m/min n=700,880rpm f=2.0mm/rev Dry

Miracle hob

Location

Tool features

Use of (AITi)N coating with high hardness and oxidation resistance. Possible to machine at ultra high speeds over vc=300m/min. Long tool life even during post-quenching finish machining of gears.

Cutting conditions

vc=335m/min n=1180min⁻¹ f=1.85mm/rev Dry

Tooling Sheet 5

Large diameter integral type helical broach

Location

Tool features

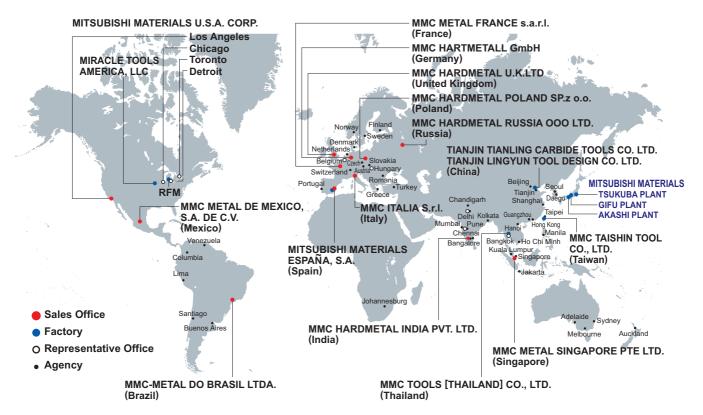
An integral broach type enables reduction of finishing allowance. Longer tool life by reducing the load on each cutting edge.

Cutting conditions

vc=6~10m/min

Power forming rack

Location


Tool features

Fine particle shot peening is provided to apply residual stress on finish teeth to dramatically increase the fracture resistance of the rack teeth.

Rolling conditions

Rolling speed:10~20m/min

Overseas Sales Offices

JAPAN

MITSUBISHI MATERIALS CORPORATION

Area Marketing & Operations Department KFC bldg., 8F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 Japan TEL +81-3-5819-8772 FAX +81-3-5819-8773

USA

MITSUBISHI MATERIALS U.S.A. CORPORATION

17401 Eastman Street, Irvine, California, 92614, USA TEL +1-949-862-5100 FAX +1-949-862-5180

MEXICO

MMC METAL DE MEXICO, S.A. DE C.V.

Av. La Canada No.16, Parque Industrial Bernardo Quintana, El Marques, Queretaro, CP76246 Mexico TEL +52-442-221-6136 FAX +52-442-221-6134

BRAZIL

MMC-METAL DO BRASIL LTDA.

Rua Cincinato Braga, 340, 13th-Flor, Bela Vista-CEP 01333-010, São Paulo-SP, Brazil TEL +55-11-3266-7687 FAX +55-11-3287-8587

SINGAPORE

MMC METAL SINGAPORE PTE LTD.

10, Arumugam Road, #04-00 Lion Industrial Building, 409957, Singapore TEL +65-6743-9370 FAX +65-6749-1469

THAILAND

Bangkok Representative office

4th Floor, Siam Terminal Building, 2991 Ladphao Road, Klongjan, Bangkapi, Bangkok 10240. THAILAND TEL +66-2-370-3060 FAX +66-2-370-3068

INDIA

MMC HARDMETAL INDIA PVT. LTD.

No.10, 1st Floor, 80 Feet Road, R.M.V 2nd Stage, Bangalore - 560094 India TEL +91-80-2351-6083 FAX +91-80-2351-6080

GERMANY

MMC HARTMETALL GmbH

Comeniusstr. 2, 40670 Meerbusch Germany TEL +49-2159-9189-0 FAX +49-2159-918966

UNITED KINGDOM

MMC HARDMETAL U.K. LTD

Mitsubishi House, Galena Close, B774AS Tamworth, U.K. TEL +44-1827-312312 FAX +44-1827-312314

FRANCE

MMC METAL FRANCE s.a.r.l.

Rue Jaques Monod 6, 91400 Orsay, France TEL +33-1-69 35 53 53 FAX +33-1-69 35 53 50

SPAIN

MITSUBISHI MATERIALS ESPAÑA, S.A.

Calle Emperador 2, 46136 Museros/Valencia, Spain TEL +34-96-144-1711 FAX +34-96-144-3786

ITALY

MMC ITALIA S.r.I.

V. le Delle Industrie 20/5, 20020 Milano Italy TEL +39-02 93 77 03 1 FAX +39-02 93 58 90 93

RUSSIA

MMC HARDMETAL RUSSIA OOO LTD.

UL. Bolschaja Pochtovaja, 36 Bldg.1, 105082 Moscow, Russia TEL +7-495-72558-85 FAX +7-495-98139-73

POLAND

MMC HARDMETAL POLAND SP. z o.o.

Al. Armii Karjowey 61, 40-541 Wroclaw, Poland TEL +48-71335-16-20 FAX +48-71335-16-21

N.I	
	2007 0 E(2D)