

2022.3 Update B251G

SMART MIRACLE End Mills VQN Series for Heat Resistant Super Alloys

Outstanding Wear Resistance Enables Stable Machining of Heat Resistant Super Alloys

AITSUBISHI MATERIALS CORPORATION

SMART MIRACLE End Mill Series for Difficult-to-Cut Materials

VQN4/6MVRB

Featuring the new (AI, Ti, Si)N based coating that has excellent wear resistance. Additionally, the optimum number of irregular helix flutes greatly dampens vibration to enable stable, efficient machining.

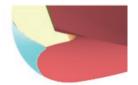
Features

Optimised Number of Flutes

The number of flutes has been optimised in accordance to the outer diameter to achieve excellent chip evacuation and increased tool rigidity.

Corner R-geometry with Improved Fracture Resistance

The negative shape of the rake angle for the R cutting edge allows the smooth flow of chips, thereby improving chip resistance.



Irregular Helix Flutes

Helix angles vary from flute to flute by up to 4°.

VQN4/6MVRB

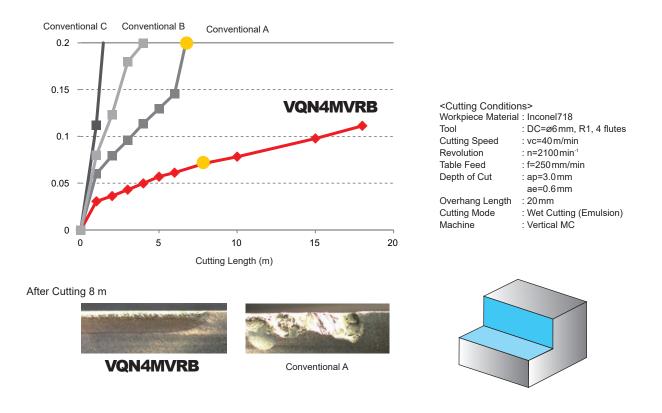
Conventional

Defect due to high load

Defect due to lack of strength

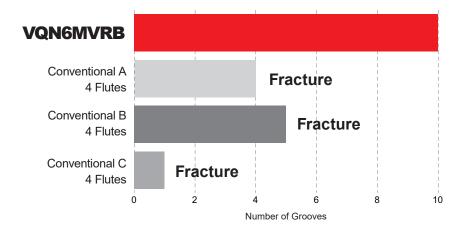
Special Flute Shape

The flute shape is specially designed to suit machining of super heat resistant alloys by featuring excellent chip evacuation and wear resistance properties.

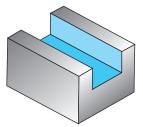

VQN4MVRB

VQN6MVRB

Cutting Performance


Machining Inconel 718 - Comparison of Wear Resistance

Excellent wear resistance when machining super heat-resistant alloys.


Machining Inconel 718 - Comparison of Fracture Resistance

Due to the optimised number of flutes and the enhanced R corner shape, fracture resistance is improved and tool life is more than doubled compared to conventional products.

<cutting conditio<br="">Workpiece Materia</cutting>	
Tool	: DC=ø12mm
Cutting Speed	: vc=30 m/min
Revolution	: n=800 min ⁻¹
Table Feed	: f=140 mm/min
Depth of Cut	: ap=12mm
Overhang Length	: 36 mm
Cutting Mode	: Wet Cutting (Emulsion)
Machine	: Vertical MC

SMART MIRACLE End Mill Series for Difficult-to-Cut Materials VQN2MB/4MB/4MBF

(AI, Ti, Si) N-based coating with outstanding wear resistance, combined with optimised cutting edges, provide high machining efficiency and a stable cutting performance.

Features

(AI, Ti, Si) N-based Coating

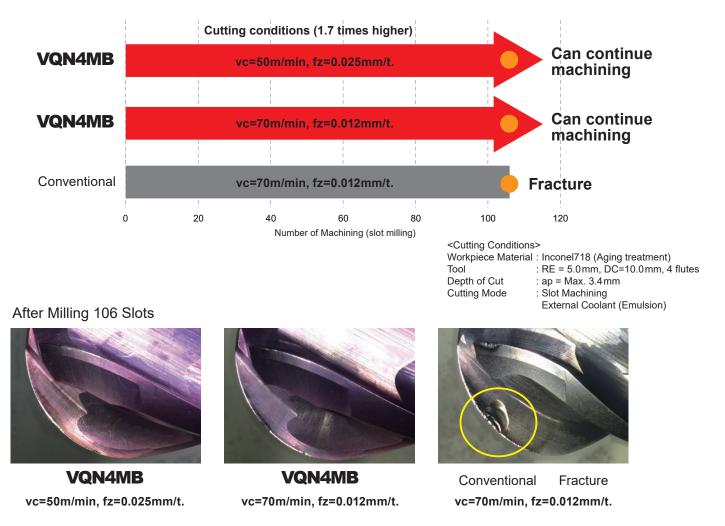
The (AI, Ti, Si) based coatings maintain their film hardness and heat resistant properties under the harshest of conditions, making it highly suitable for applying to end mills for machining heat resistant super alloys.

New Cutting Edge Geometry

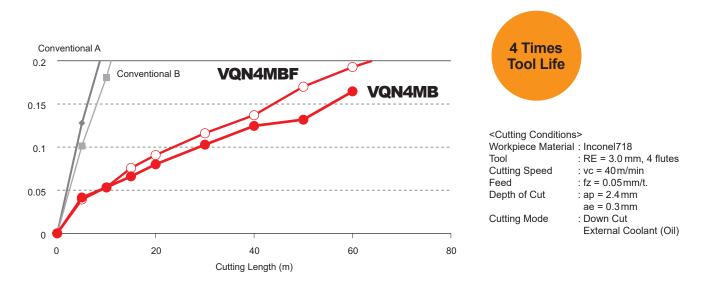
The corner radius cutting edge rake angles have been optimised for consistent contact. Additionally the structure of both the 2 and 4 flutes have been strengthened.

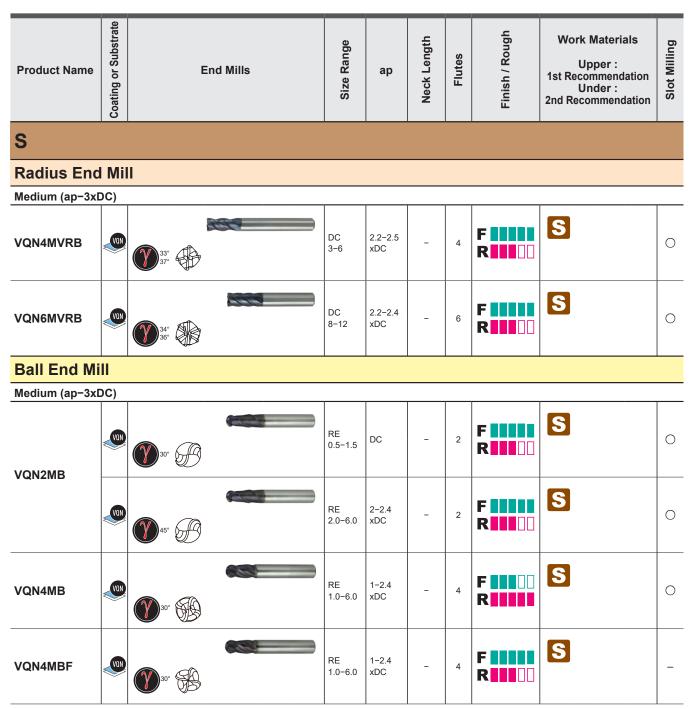
Versatile 4 Flute Type

When compared to 2-flute types, end mills with 4 flutes have a longer tool life and provide higher efficiency machining. In addition the new types have a much improved chip disposal rate to prevent clogging. Available now is the new VQN4MBF with a full 4-flute end geometry, ideal for 5 axis machining. The new VQN4MB, with 4 side flutes displays a special 2 flute end geometry to provide extra space for excellent chip evacuation during rough machining.



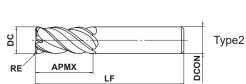
Cutting Performance


Machining Inconel 718 - Comparison of Fracture Resistance


Cutting time has been reduced due to an increased feed rate and an excellent resistance to fracturing during slotting. Ideal for machining heat resistant alloys typically used in the aerospace industry.

Machining Inconel 718 - Comparison of Wear Resistance

Both VQN4MBF and VQN4MB have more than four times the wear resistance of conventional products.


* ap : Depth of Cut

* DC : Cutting Diameter

* RE : Radius of Ball Nose

	4/6M dius, Mediun				VQN VQN4 33 37	° 🔰 36° 🙀	ANA VQN6
Carbon Steel, Alloy Steel, Cast Iron (<30HRC)	Tool Steel, Pre-hardened Steel,Hardened Steel (≤45HRC)	Hardened Steel (≤55HRC)	Hardened Steel (>55HRC)	Austenitic Stainless Steel	Heat Resistant Alloy	Copper Alloy	Aluminium Alloy
					O		
					RE APM)		TA2 15° , Type1

	VQN4	VQN6		
	±0.015	±0.02		
	DC≤12			
	- 0.02			
	DCON=6	DCON=8,10	DCON=12	
h6	0 - 0.008	0 - 0.009	0 - 0.011	

(AI, Ti, Si) N-based coating exhibits excellent wear and chipping resistance when machining heat resistant super alloys.
Optimised number of flutes for efficient and stable machining.

								(mm)
Order Number	DC	RE	ΑΡΜΧ	LF	DCON	* No.F	Stock	Туре
VQN4MVRBD0300R030	3	0.3	7	45	6	4	•	1
VQN4MVRBD0300R050	3	0.5	7	45	6	4	•	1
VQN4MVRBD0400R030	4	0.3	10	45	6	4	•	1
VQN4MVRBD0400R050	4	0.5	10	45	6	4	•	1
VQN4MVRBD0500R050	5	0.5	12	50	6	4	•	1
VQN4MVRBD0600R050	6	0.5	13	50	6	4	•	2
VQN4MVRBD0600R100	6	1	13	50	6	4	•	2
VQN6MVRBD0800R050	8	0.5	19	60	8	6	•	2
VQN6MVRBD0800R100	8	1	19	60	8	6	•	2
VQN6MVRBD1000R050	10	0.5	22	70	10	6	•	2
VQN6MVRBD1000R100	10	1	22	70	10	6	•	2
VQN6MVRBD1200R050	12	0.5	26	75	12	6	•	2
VQN6MVRBD1200R100	12	1	26	75	12	6	•	2

* Number of Flutes

DC = Cutting Dia. **RE** = Corner Radiu

- **RE** = Corner Radius **APMX** = Length of Cut
- LU = Neck Length
- DN = Neck Dia. LF = Overall Length DCON = Shank Dia.

VQN4/6MVRB

Corner Radius, Medium cut length, 4/6 flute

Recommended Cutting Conditions

Side milling

(mm)

		Nickel-based Heat Resistant Super Alloy						
Workpiec	e Material							
		Inconel718, Inconel713C, WASPALOY etc.						
DC	Number of Flutes	Revolution (min ⁻¹)	(min ⁻¹) (mm/min) ap ae					
3	4	4200	340	4.5	0.3			
4	4	3200 260 6 0.4						
5	4	2500	300	7.5	0.5			
6	4	2100	250	9	0.6			
8	6	1600	290	12	0.8			
10	6	1300	310	15	1			
12	6	1100	260	18	1.2			
Depth	of cut	ae ap						

Slot	milling
------	---------

(mm)

	-			(11111)		
		Nickel-based Heat Resistant Super Alloy				
Workpied	e Material					
		Inconel718, Inco	onel713C, WASP	ALOY etc.		
DC	Number of Flutes	Revolution (min ⁻¹)	Feed rate (mm/min)	Depth of cut ap		
3	4	3200	260	1.5		
4	4	2400	190	2		
5	4	1900	230	2.5		
6	4	1600	190	3		
8	6	1200	140	4		
10	6	1000	120	5		
12	6	800	140	6		
Depth	n of cut					

Note 1) For heat resistant super alloy, the use of water-solble coolant is effective.

Note 2) Chattering can still occur if the machine rigidity and clamping method are insufficient. In these cases the feed and speed should be reduced proportionately.

Note 3) If the depth of cut is shallow, the revolution and feed rate can be increased.

		2MB	ength, 2 flut	e			30° (RE≤1.5 RE>	45° 45°
Carbon Steel, Al (<30	loy Steel, Cast Iron Tool DHRC)	Steel, Pre-hardened Steel, Hardened Steel (≤45HRC)	Hardened Steel (≤55HRC)	Hardened Steel (>55HRC)	Austenitic Stainless Steel	Heat Resistant Alloy	Copper Alloy	Aluminium Alloy
						Ô		
					1		BHTA2 15°	Type1
						RE APMX	HTA2 15°	Type2
\bigcirc	RE≤6 ±0.010					8		Туре3
h5	DCON=6 0 - 0.005	6 8≤DCON≤1 0 - 0.006	0 DCON=12 0 - 0.008			RE	LF	DCON

● (Al, Ti, Si) N-based coating exhibits excellent wear and chipping resistance when machining heat resistant super alloys. ● The R cutting edge rake angle and ball nose geometry have been optimised to improve strength.

(mm)										
Order Number	RE	DC	АРМХ	LU	DN	LF	DCON	* No.F	Stock	Туре
VQN2MBR0050	0.5	1	1	4	0.94	60	6	2	•	1
VQN2MBR0100	1.0	2	2	6	1.9	60	6	2	•	1
VQN2MBR0150	1.5	3	3	8	2.9	60	6	2	•	1
VQN2MBR0200	2.0	4	8	-	-	60	6	2	•	2
VQN2MBR0250	2.5	5	12	_	-	60	6	2	•	2
VQN2MBR0300	3.0	6	12	-	-	60	6	2	•	3
VQN2MBR0400	4.0	8	14	_	-	70	8	2	•	3
VQN2MBR0500	5.0	10	18	_	_	80	10	2	•	3
VQN2MBR0600	6.0	12	22	_	_	80	12	2	•	3

* Number of Flutes

DC = Cutting Dia.

RE = Radius of Ball Nose

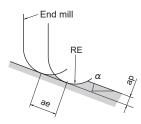
- APMX = Length of Cut
- LU = Neck Length
- DN = Neck Dia. LF = Overall Length DCON = Shank Dia.

(mm)

VQN2MB

Medium cut length, 2 flute

Recommended Cutting Conditions


	Nickel-based Heat Resistant Super Alloy								
Workpiece Material									
	Inconel718,	Inconel7130	C, WASPALC	Y etc.					
R	α≤	15°	α>	15°	Danth of out	Danth of out			
RE	Revolution (min ⁻¹)	Feed rate (mm/min)	Revolution (min ⁻¹)	Feed rate (mm/min)	Depth of cut ap	Depth of cut ae			
0.5	12700	640	12700	760	0.1	0.25			
1.0	6300	320	6300	380	0.2	0.50			
1.5	4200	250	4200	250	0.3	0.75			
2.0	3100	190	3100	220	0.4	1.00			
2.5	2500	180	2500	200	0.5	1.25			
3.0	2100	170	2100	210	0.6	1.50			
4.0	1500	130	1500	160	0.8	2.00			
5.0	1200	130	1200	140	1.0	2.50			
6.0	1000	110	1000	120	1.2	3.00			
Depth of cut	≤ae ≤ap								

Note 1) For heat resistant super alloy, the use of water-solble coolant is effective.

Note 2) If the depth of cut is shallow, the revolution and feed rate can be increased.

Note 3) Vibration may occur if the rigidity of machine or workpiece is low. In this case, please reduce the revolution and feed rate proportionately.

Note 4) α is the inclination angle of the machined surface.

ae:Pick Feed

VQN4MB VQN Ball nose, Medium cut length, 4 flute Hardened Steel (≤55HRC) Carbon Steel, Alloy Steel, Cast Iron Tool Steel, Pre-hardened Steel, Hardened Steel (<30HRC) (≤45HRC) Hardened Steel (>55HRC) Austenitic Heat Resistant Alloy Copper Alloy Aluminium Alloy Stainless Steel \bigcirc DN BHTA2 15° Type1 B DCON АРМХ RE LU LF BHTA2 15° £ B Type2 DCON APMX RF LF RE≤6 g Type3 ±0.010 DCON DCON=6 APMX 8≤DCON≤10 DCON=12 RE LF h5 0 - 0.005 0 - 0.006 0 - 0.008

(AI, Ti, Si) N-based coating exhibits excellent wear and chipping resistance when machining heat resistant super alloys.
The 2-flute end cutting edge provides excellent chip evacuation and is ideal for rough machining.

			1			1				(mm)
Order Number	RE	DC	АРМХ	LU	DN	LF	DCON	* No.F	Stock	Туре
VQN4MBR0100	1.0	2	2	6	1.9	60	6	4	•	1
VQN4MBR0150	1.5	3	3	8	2.9	60	6	4	•	1
VQN4MBR0200	2.0	4	8	_	_	60	6	4	•	2
VQN4MBR0250	2.5	5	12	-	_	60	6	4	•	2
VQN4MBR0300	3.0	6	12	_	_	60	6	4	•	3
VQN4MBR0400	4.0	8	14	-	_	70	8	4	•	3
VQN4MBR0500	5.0	10	18	_	_	80	10	4	•	3
VQN4MBR0600	6.0	12	22	-	_	80	12	4	•	3

* Number of Flutes

DC = Cutting Dia.

RE = Radius of Ball Nose

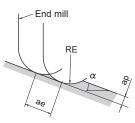
- **APMX** = Length of Cut
- LU = Neck Length
- DN = Neck Dia. LF = Overall Length DCON = Shank Dia.

VQN4MB

Medium cut length, 4 flute

Recommended Cutting Conditions

	Nickel-based Heat Resistant Super Alloy										
Workpiece Material											
	Inconel718.	Inconel7130	C, WASPALC	Y etc.							
	,	α≤15° α>15°									
R RE	Revolution (min ⁻¹)	Feed rate (mm/min)	Feed rate Revolution Feed rate		Depth of cut ap	Depth of cut ae					
1.0	6300	380	6300	510	0.2	0.50					
1.5	4200	340	4200	420	0.3	0.75					
2.0	3100	320	3100	380	0.4	1.00					
2.5	2500	250	2500	310	0.5	1.25					
3.0	2100	210	2100	250	0.6	1.50					
4.0	1500	160	1500	190	0.8	2.00					
5.0	1200	150	1200	200	1.0	2.50					
6.0	1000	150	1000	170	1.2	3.00					
Depth of cut											


Note 1) For heat resistant super alloy, the use of water-solble coolant is effective.

Note 2) If the depth of cut is shallow, the revolution and feed rate can be increased.

Note 3) Vibration may occur if the rigidity of machine or workpiece is low. In this case, please reduce the revolution and feed rate proportionately.

(mm)

Note 4) α is the inclination angle of the machined surface.

ae:Pick Feed

VQN4MBF VQN Ball nose, Medium cut length, 4 flute Hardened Steel (≤55HRC) Carbon Steel, Alloy Steel, Cast Iron Tool Steel, Pre-hardened Steel, Hardened Steel, Hardened Steel, Hardened Steel (<30HRC) (≤45HRC) Hardened Steel (>55HRC) Austenitic Heat Resistant Alloy Copper Alloy Aluminium Alloy Stainless Steel \bigcirc ND BHTA2 15° Type1 B DCON АРМХ RE LU LF BHTA2 15° Type2 2 DCON APMX RE LF RE≤6 B Type3 ±0.010 DCON АРМХ DCON=6 8≤DCON≤10 DCON=12 RE LF h5 0 - 0.005 0 - 0.006 0 - 0.008

(AI, Ti, Si) N-based coating exhibits excellent wear and chipping resistance when machining heat resistant super alloys.
The 4-flute end cutting edge is also ideal for 5-axis machining.

			1			1				(mm)
Order Number	RE	DC	APMX	LU	DN	LF	DCON	* No.F	Stock	Туре
VQN4MBFR0100	1.0	2	2	6	1.9	60	6	4	•	1
VQN4MBFR0150	1.5	3	3	8	2.9	60	6	4	•	1
VQN4MBFR0200	2.0	4	8	_	_	60	6	4	•	2
VQN4MBFR0250	2.5	5	12	-	_	60	6	4	•	2
VQN4MBFR0300	3.0	6	12	_	_	60	6	4	•	3
VQN4MBFR0400	4.0	8	14	-	-	70	8	4	•	3
VQN4MBFR0500	5.0	10	18	_	_	80	10	4	•	3
VQN4MBFR0600	6.0	12	22	-	_	80	12	4	•	3

* Number of Flutes

DC = Cutting Dia.

RE = Radius of Ball Nose

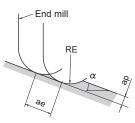
- **APMX** = Length of Cut
- LU = Neck Length
- DN = Neck Dia. LF = Overall Length DCON = Shank Dia.

VQN4MBF

Medium cut length, 4 flute

Recommended Cutting Conditions

	Nickel-based Heat Resistant Super Alloy								
Workpiece Material									
	Inconel718, Inconel713C, WASPALOY etc.								
R	α≤15° α>15°								
RE	Revolution (min ⁻¹)	Feed rate (mm/min)	Depth of cut ae	Revolution (min ⁻¹)	Feed rate (mm/min)	Depth of cut ae	Depth of cut ap		
1.0	6300	180	0.40	6300	310	0.50	0.2		
1.5	4200	170	0.60	4200	340	0.75	0.3		
2.0	3100	190	0.80	3100	320	1.00	0.4		
2.5	2500	150	1.00	2500	250	1.25	0.5		
3.0	2100	170	1.20	2100	250	1.50	0.6		
4.0	1500	130	1.60	1500	190	2.00	0.8		
5.0	1200	100	2.00	1200	200	2.50	1.0		
6.0	1000	130	2.40	1000	170	3.00	1.2		
Depth of cut			≤ae		≤ap				


Note 1) For heat resistant super alloy, the use of water-solble coolant is effective.

Note 2) If the depth of cut is shallow, the revolution and feed rate can be increased.

Note 3) Vibration may occur if the rigidity of machine or workpiece is low. In this case, please reduce the revolution and feed rate proportionately.

(mm)

Note 4) α is the inclination angle of the machined surface.

ae:Pick Feed

Memo

SMART MIRACLE End Mills VQN Series for Heat Resistant Super Alloys

For Your Safety

•Don't handle inserts and chips without gloves. •Please machine within the recommended application range and exchange expired tools with new ones in advance of breakage. •Please use safety covers and wear safety glasses. •When using compounded cutting oils, please take fire precautions. •When attaching inserts or spare parts, please use only the correct wrench or driver. •When using rotating tools, please make a trial run to check run-out, vibration and abnormal sounds etc.

A MITSUBISHI MATERIALS CORPORATION

MITSUBISHI MATERIALS CORPORATION

Overseas Sales Dept, Asian Region

KFC bldg., 8F, 1-6-1 Yokoami, Sumida-ku, Tokyo 130-0015, Japan TEL +81-3-5819-8771 FAX +81-3-5819-8774

Overseas Sales Dept, European & American Region

KFC bldg., 8F, 1-6-1 Yokoami, Sumida-ku, Tokyo 130-0015, Japan TEL +81-3-5819-8772 FAX +81-3-5819-8774