

小型自動旋盤用工具シリーズ

- 炭素鋼旋削加工用 MS6015 ネガティブインサート FSブレーカ ポジティブインサート LS-Pブレーカ
- センタリング・面取り加工用超硬ドリル リーディングドリルシリーズ DLE
- ●座ぐり加工用超硬ソリッドドリル MFEシリーズ

炭素鋼旋削加工用PVDコーテッド超硬材種

M56015

純鉄、炭素鋼、快削鋼の旋削加工で 安定した仕上げ面と寸法精度を実現

特長 1

専用超硬母材と新PVDコーティングのコンビネーションで耐摩耗性を大幅に向上させています。

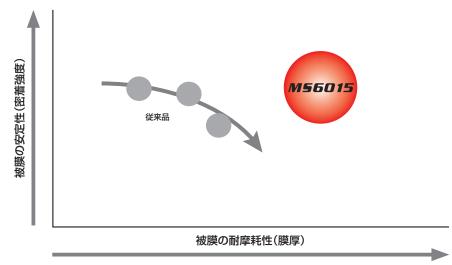
M56015 従来品 TiCN 系積層 コーティング TIAIN系 コーティング硬さ 3000 2800 (HV) 低 高 (炭素鋼) 母材硬度 92.0 92.0 (HRA) 母材抗折力 2.0 2.0 (GPa)

Ti-C-N 系積層コーティング

積層構造の最適化により

耐摩耗性・耐溶着性に優れ、

炭素鋼に対し最大の効果を


発揮

密着性向上

摩擦係数の低減により切りくず処理性に優れ、安定した加工精度を実現します。

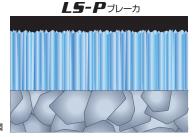
積層構造の最適化

積層構造の最適化により、被膜の安定性を損なうことなく厚膜化を実現し、耐摩耗性を大幅に向上させています。

特長 2

部品加工に対応したコーナRをマイナス公差に設定しました。

呼び記号) DCGT11T302 M R-SN DCGT11T304 M -SMG


02M R0.18mm (R0.15 – R0.20mm) 04M R0.38mm (R0.35 - R0.40mm)

前挽き軽切削用 上5-P ブレーカ

ポリッシュ(鏡面)仕上げで、 耐溶着性を大幅に向上

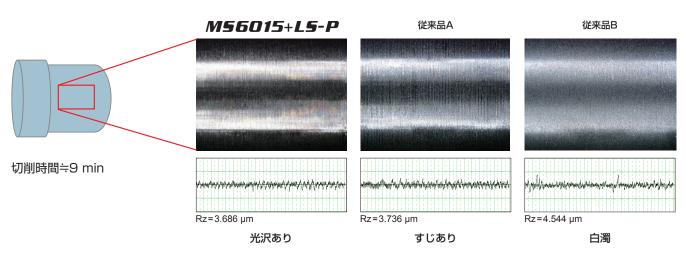
超硬母材の平滑化により、コーティング粒子が 一定方向に成長し、より緻密で平滑なコーティ ング膜を構成することで、耐溶着性に優れ、安 定加工を実現しました。

従来品

*イメージ図

一定方向に成長した被膜 被膜表面も平滑で耐溶着性に優れる。

母材表面が平滑


母材表面が凹凸

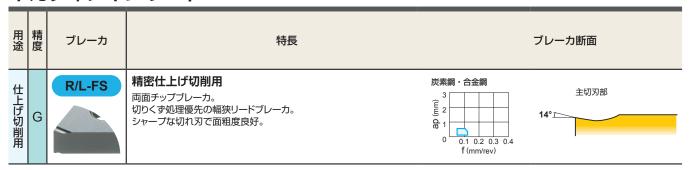
ランダムに成長した被膜 空隙・欠陥などによる性能低下。

切削性能

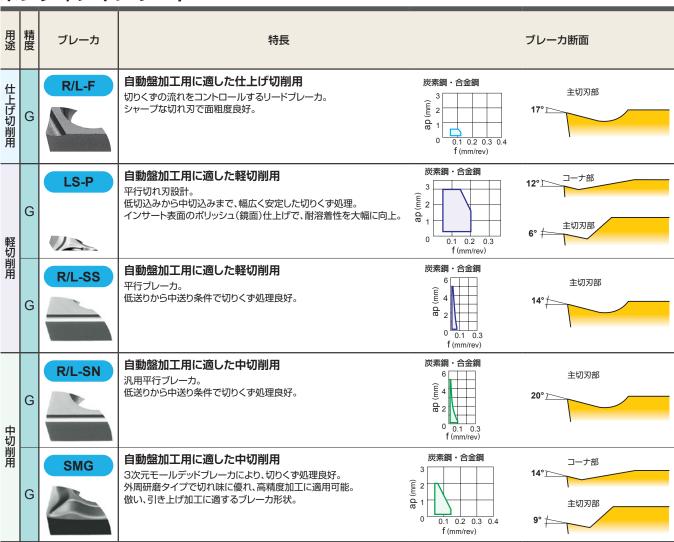
純鉄系軟磁性鋼での仕上げ面比較

白濁を抑制し、良好な加工面品位を実現します。

<切削条件>


被 削 材:ELCH2 インサート: DCGT11T302M-LS-P

種:MS6015 切削速度: vc=100m/min 送り量:f=0.03mm/rev

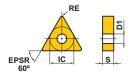

切 込 み 量:**ap=**0.5mm 加 工 形 態:湿式切削(不水溶性切削油剤) 使用機械:小型CNC自動旋盤

前挽き加工用ブレーカシステム

ネガティブインサート

ポジティブインサート

前挽き加工推奨切削条件


	被削材	被削材 インサート材種		送り量 (mm/rev)
Р	炭素鋼・合金鋼	MS6015	100 (50—150)	0.08 (0.01-0.15)
	純鉄・快削鋼	MS6015	150 (50—250)	0.08 (0.01-0.15)
M	ステンレス鋼	MS6015	80 (50—120)	0.06 (0.02-0.1)

ネガティブインサート(穴つき)

G級精度

TNGG

								(mm)
		在庫						
	呼 び 記 号	切削領域	MS6015		IC	S	RE	D1
NEW	TNGG160402R-FS	F	•		9.525	4.76	0.2	3.81
NEW	TNGG160402L-FS	F	•		9.525	4.76	0.2	3.81
NEW	TNGG160404R-FS	F	•		9.525	4.76	0.4	3.81
NEW	TNGG160404L-FS	F	•		9.525	4.76	0.4	3.81
NEW	TNGG160408R-FS	F	•		9.525	4.76	0.8	3.81
NEW	TNGG160408L-FS	F	•		9.525	4.76	0.8	3.81

M56015

プポジティブインサート(穴つき)

G級精度

CCGH CCGT

																		(mm)
				右	庫								在	庫				
		呼 び 記 号	切削領域	MS6015		IC	S	RE	D1		呼 び 記 号	切削領域	MS6015		IC	S	RE	D1
	NEW	CCGH060202MR-F	F	•		6.35	2.38	0.18	2.8		CCGT060201MR-SN	М	•		6.35	2.38	0.08	2.8
ı	NEW	CCGH060202ML-F	F	•		6.35	2.38	0.18	2.8	N	NEW CCGT060201ML-SN	М	•		6.35	2.38	0.08	2.8
ı	NEW	CCGH060204MR-F	F	•		6.35	2.38	0.38	2.8		CCGT060202MR-SN	М	•		6.35	2.38	0.18	2.8
ı	NEW	CCGH060204ML-F	F	•		6.35	2.38	0.38	2.8	N	NEW CCGT060202ML-SN	М	•		6.35	2.38	0.18	2.8
1	NEW	CCGT03S101MR-F	F	•		3.57*	1.39	0.08	2	_	CCGT09T301MR-SN	М	•		9.525	3.97	0.08	4.4
ı	NEW	CCGT03S101ML-F	F	•		3.57*	1.39	0.08	2	N	NEW CCGT09T301ML-SN	М	•		9.525	3.97	0.08	4.4
ı	NEW	CCGT03S102MR-F	F	•		3.57*	1.39	0.18	2		CCGT09T302MR-SN	М	•		9.525	3.97	0.18	4.4
	NEW	CCGT03S102ML-F	F	•		3.57*	1.39	0.18	2	N	NEW CCGT09T302ML-SN	М	•		9.525	3.97	0.18	4.4
ı	NEW	CCGT03S104MR-F	F	•		3.57*	1.39	0.38	2		CCGT09T304MR-SN	М	•		9.525	3.97	0.38	4.4
ı	NEW	CCGT03S104ML-F	F	•		3.57*	1.39	0.38	2	N	CCGT09T304ML-SN	М	•		9.525	3.97	0.38	4.4
ı	NEW	CCGT04T001MR-F	F	•		4.37*	1.79	0.08	2.4		CCGT060201M-SMG	М	•		6.35	2.38	0.08	2.8
ı	NEW	CCGT04T001ML-F	F	•		4.37*	1.79	0.08	2.4		CCGT060202M-SMG	М	•		6.35	2.38	0.18	2.8
ı	NEW	CCGT04T002MR-F	F	•		4.37*	1.79	0.18	2.4		CCGT060204M-SMG	М	•		6.35	2.38	0.38	2.8
ı	NEW	CCGT04T002ML-F	F	•		4.37*	1.79	0.18	2.4		CCGT09T301M-SMG	М	•		9.525	3.97	0.08	4.4
ı	NEW	CCGT04T004MR-F	F	•		4.37*	1.79	0.38	2.4			М	•		9.525	3.97	0.18	4.4
1	NEW	CCGT04T004ML-F	F	•		4.37*	1.79	0.38	2.4		CCGT09T304M-SMG	М	•		9.525	3.97	0.38	4.4
ı	NEW	CCGT060201M-LS-P	L	•		6.35	2.38	0.08	2.8									
1	NEW	CCGT060202M-LS-P	L	•		6.35	2.38	0.18	2.8									
1	NEW	CCGT09T301M-LS-P	L	•		9.525	3.97	0.08	4.4									
1	NEW	CCGT09T302M-LS-P	L	•		9.525	3.97	0.18	4.4									
1	NEW	CCGT09T304M-LS-P	L	•		9.525	3.97	0.38	4.4									
		CCGT060201MR-SS	L	•		6.35	2.38	0.08	2.8									
	NEW	CCGT060201ML-SS	L	•		6.35	2.38	0.08	2.8									
		CCGT060202MR-SS	L	•		6.35	2.38	0.18	2.8									

L

L

L

L

L

L

L

•

6.35

9.525

9.525

9.525

9.525

9.525

9.525

2.38

3.97

3.97

3.97

3.97

3.97

3.97

0.18

0.08

0.08

0.18

0.18

0.38

0.38

2.8

4.4

4.4

4.4

4.4

4.4

4.4

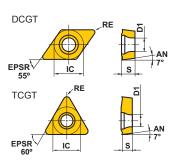
NEW CCGT060202ML-SS

NEW CCGT09T301ML-SS

NEW CCGT09T302ML-SS

NEW CCGT09T304ML-SS

CCGT09T301MR-SS


CCGT09T302MR-SS

CCGT09T304MR-SS

[•] * 内接円がISO規格に準拠しておりません。(スティックバーSCLC形専用)

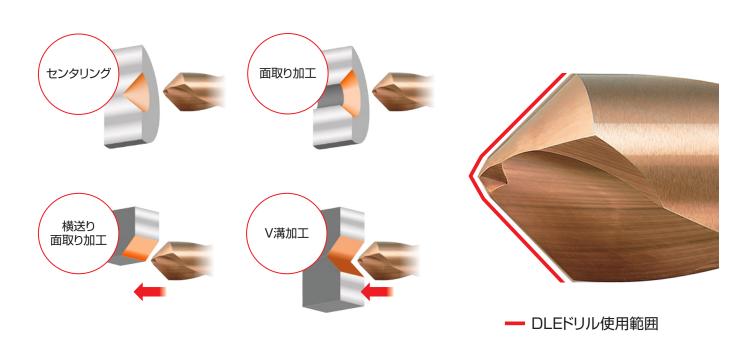
フ°ポジティブインサート(穴つき)

G級精度

軽切削 L	軽切削 L	中切削 M	中切削 M
LS-P	R/L-SS	R/L-SN	SMG
	0	0	
仕上げ切削 F			
R/L-F			
۵			

	L-77	在	庫				
呼 び 記 号	切削領域	MS6015		IC	S	RE	D1
DCGT070201M-LS-P	L	•		6.35	2.38	0.08	2.8
DCGT070202M-LS-P	L	•		6.35	2.38	0.18	2.8
DCGT070204M-LS-P	L	•		6.35	2.38	0.38	2.8
DCGT11T301M-LS-P	L	•		9.525	3.97	0.08	4.4
DCGT11T302M-LS-P	L	•		9.525	3.97	0.18	4.4
DCGT11T304M-LS-P	L	•		9.525	3.97	0.38	4.4
DCGT070201MR-SS	L	•		6.35	2.38	0.08	2.8
DCGT070201ML-SS	L	•		6.35	2.38	0.08	2.8
DCGT070202MR-SS	L	•		6.35	2.38	0.18	2.8
DCGT070202ML-SS	L	•		6.35	2.38	0.18	2.8
DCGT11T301MR-SS	L	•		9.525	3.97	0.08	4.4
DCGT11T301ML-SS	L	•		9.525	3.97	0.08	4.4
DCGT11T302MR-SS	L	•		9.525	3.97	0.18	4.4
DCGT11T302ML-SS	L	•		9.525	3.97	0.18	4.4
DCGT11T304MR-SS	L	•		9.525	3.97	0.38	4.4
DCGT11T304ML-SS	L	•		9.525	3.97	0.38	4.4
DCGT070201MR-SN	М	•		6.35	2.38	0.08	2.8
DCGT070201ML-SN	М	•		6.35	2.38	0.08	2.8
DCGT070202MR-SN	М	•		6.35	2.38	0.18	2.8
DCGT070202ML-SN	М	•		6.35	2.38	0.18	2.8
DCGT11T301MR-SN	М	•		9.525	3.97	0.08	4.4
DCGT11T301ML-SN	М	•		9.525	3.97	0.08	4.4
DCGT11T302MR-SN	М	•		9.525	3.97	0.18	4.4
DCGT11T302ML-SN	М	•		9.525	3.97	0.18	4.4
DCGT11T304MR-SN	М	•		9.525	3.97	0.38	4.4
DCGT11T304ML-SN	М	•		9.525	3.97	0.38	4.4
DCGT070201M-SMG	М	•		6.35	2.38	0.08	2.8
DCGT070202M-SMG	М	•		6.35	2.38	0.18	2.8
DCGT070204M-SMG	М	•		6.35	2.38	0.38	2.8
DCGT11T301M-SMG	М	•		9.525	3.97	0.08	4.4
DCGT11T302M-SMG	М	•		9.525	3.97	0.18	4.4
DCGT11T304M-SMG	М	•		9.525	3.97	0.38	4.4

_										
	呼 び 記 号	切削領域	在 2109SM	庫	IC	S	RE	D1		
NEW	TCGT060101MR-F	F	•		3.97	1.59	0.08	2.3		
NEW	TCGT060101ML-F	F	•		3.97	1.59	0.08	2.3		
NEW	TCGT060102MR-F	F	•		3.97	1.59	0.18	2.3		
NEW	TCGT060102ML-F	F	•		3.97	1.59	0.18	2.3		
NEW	TCGT060104MR-F	F	•		3.97	1.59	0.38	2.3		
NEW	TCGT060104ML-F	F	•		3.97	1.59	0.38	2.3		


	± m/u					
_1	吏用例					
	使用インサート(材種)	DCGT11T302M-SMG (MS6015)	DCGT11T301MR-SN (MS6015)			
	加工物	純鉄系軟磁性鋼(ELCH2)	快削鋼(SUM24L)			
切	切削速度 vc (m/min)	197 (4500min ⁻¹)	125 (5000min-1)			
切削条件	送り量f(mm/rev)	0.1	0.05			
件	切込み量 ap (mm)	0.1	0.3			
	加工形態	湿式切削 不水溶性切削油剤	湿式切削 不水溶性切削油剤			
	使 用 機 械	小型CNC自動旋盤	小型CNC自動旋盤			
	結果	加工数(個/コーナ) 250 500 M56015 従来品 仕上げ面が良好で、従来の1.4倍の寿命を達成しました。 SMGブレーカは、切りくず処理も良好でした。	加工数(個/コーナ) 1000 2000 3000 M56015 従来品 MS6015は溶着が少なく、安定した寸法精度の継続が可能でした。			
	使用インサート(材種)	DCCT44T202MD SN (MSS04F)	DCCT44T202M SMC (MSC04E)			
		DCGT11T302MR-SN (MS6015)	DCGT11T302M-SMG (MS6015)			
		炭素鋼(S45C)	低炭素鋼(S15C)			

	使用インサート(材種)	DCGT11T302MR-SN (MS6015)	DCGT11T302M-SMG (MS6015)			
		炭素鋼(S45C)	低炭素鋼(S15C)			
	加工物		-(-)			
	切削速度 vc (m/min)	113 (3000min ⁻¹)	100 (1300min ⁻¹)			
	切 切削速度 vc (m/min) 削 送り量f (mm/rev) 件 切込み量 ap (mm)	0.03	0.12			
	件 切込み量 ap (mm)	1.0	1.3			
Ī	加工形態	湿式切削 不水溶性切削油剤	湿式切削 不水溶性切削油剤			
Ī	使 用 機 械	小型CNC自動旋盤	小型CNC自動旋盤			
	結 果	加工数(個/コーナ) 500 1000 1500 M56015 従来品	加工数(個/コーナ) 250 500 M 56015 従来品			
		MS6015は耐摩耗性に優れ、従来品に対し、2倍の寿命を達成 しました。	MS6015は耐溶着性に優れ、従来品に対し、1.3倍の寿命を達成しました。			

センタリング・面取り加工用超硬ドリル

リーディングドリルシリーズ DLE

センタリングと面取り加工の要求性能を追求。

特長

良好な食付き性を実現するシンニング

中心部の切りくず排出スペースにより、食付き性が向上し 良好な穴品位を実現します。さらに高い刃先強度を確保す る形状を採用しました。

切れ味が良く、耐欠損性の高い刃先形状

安定加工とバリ高さの抑制を両立します。

DLE

従来品

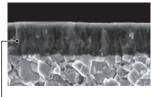
二段先端角形状により強度を向上

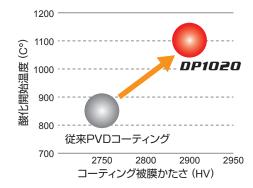
二段先端角形状により、中心の強度を確保し、突発欠損を 防止します。

※中心部は90°穴底になりません。

DLE

中心が高強度


従来品


中心から欠損

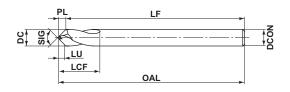
安定加工で長寿命材種 **DP1020**

ドリル専用 PVD コーテッド超硬材種により、一般鋼はもちろん軟鋼、炭素鋼、合金鋼、ステンレス鋼、鋳鉄系まで幅広い被削材で優れた耐摩耗性を発揮します。

-Al-Ti-Cr-N系積層コーティング

小型自動旋盤に幅広く対応

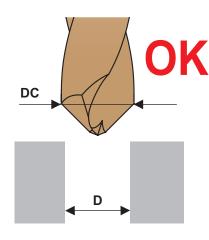
ERコレットに対応したシャンクをラインアップしました。 DCON(取付け部径) 5mm = ER8 DCON 7mm = ER11



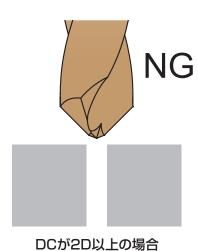
	DCON=3	3 <dcon≦6< th=""><th>6<dcon≦10< th=""><th>10<dcon≦16< th=""></dcon≦16<></th></dcon≦10<></th></dcon≦6<>	6 <dcon≦10< th=""><th>10<dcon≦16< th=""></dcon≦16<></th></dcon≦10<>	10 <dcon≦16< th=""></dcon≦16<>
h71	0	0	0	0
	-0.010	-0.012	-0.015	-0.018

外部給油形													
DC	SIG	DP1020	呼 び 記 号	LU	LCF	OAL	LF	PL	DCON				
3	90°	•	DLE0300S030P090	1.2	9	45	43.7	1.3	3				
4	90°	•	DLE0400S040P090	1.6	12	50	48.3	1.7	4				
5	90°	•	DLE0500S050P090	2.0	14	60	57.9	2.1	5				
6	90°	•	DLE0600S060P090	2.4	15	66	63.4	2.6	6				
7	90°	•	DLE0700S070P090	2.8	18	74	71.0	3.0	7				
8	90°	•	DLE0800S080P090	3.2	20	74	70.6	3.4	8				
10	90°	•	DLE1000S100P090	4.1	24	84	79.7	4.3	10				
12	90°	•	DLE1200S120P090	4.9	28	95	89.9	5.1	12				
16	90°	•	DLE1600S160P090	6.6	35	113	106.2	6.8	16				

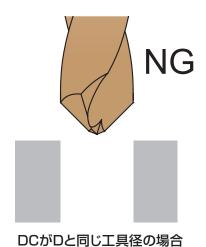
注1 二段先端角領域となる約DC/4は、中心部は90°穴底になりません。また、この領域での面取り加工は行えません。


注2 センタリング径は工具径(加工径)DC未満、使用可能長さLUを目安にご使用ください。

 LCF
 = フルート長さ
 PL
 = 先端と肩部寸法差

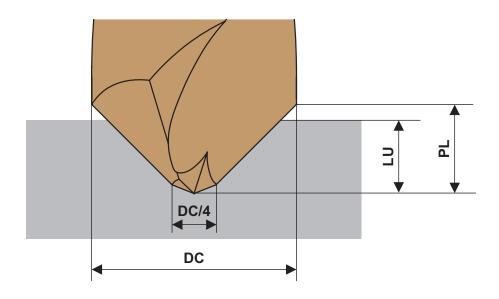

リーディングドリル選定方法

面取り加工


下穴径Dに対して、工具径(加工径)DCをD < DC < 2Dの範囲で選択してください。

例)下穴径Dが5mmの場合 工具径DCは6mm以上10mm未満 DCの6mm、7mm、8mmを選択し てください。

下穴径Dに比べ工具径DCが大き過ぎる場合(2D以上)には、面取り加工に使用できません。

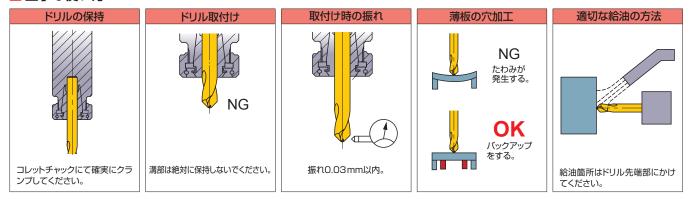


下穴径Dと同じ工具径DCでは面取り 加工に使用できません。

センタリング

センタリング径は工具径DCと同じ下穴径の加工には使用できません。3ページ規格表使用可能長さLUを目安にご使用ください。

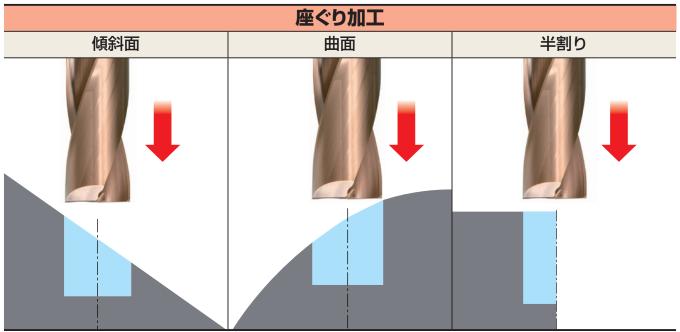
二段先端角領域となる約DC/4は、中心部は90°穴底になりません。



推奨は	刀削条件					(mm)	
	軟鋼 (≦180HB)		炭素鋼•合金鋼 (1	80-280HB)	炭素鋼·合金鋼 (280-350HB)		
被削材	SS400、S10C等		S45C、SCM440等	÷	SNCM439等		
DC	回転速度 (min ⁻¹)	送り量 (Min.ーMax.) (mm/rev)	回転速度 (min ⁻¹)	送り量 (Min.ーMax.) (mm/rev)	回転速度 (min ⁻¹)	送り量 (Min.ーMax.) (mm/rev)	
3	7900	0.06 (0.04-0.08)	6800	0.06 (0.04-0.08)	6300	0.05 (0.03-0.07)	
4	5900	0.06 (0.04-0.08)	5100	0.06 (0.04-0.08)	4700	0.05 (0.03-0.07)	
5	5000	0.07 (0.05-0.09)	4400	0.07 (0.05-0.09)	4100	0.06 (0.04-0.08)	
6	4200	0.07 (0.05-0.09)	3700	0.07 (0.05-0.09)	3400	0.06 (0.04-0.08)	
7	3600	0.08 (0.05-0.10)	3100	0.08 (0.05-0.10)	2900	0.06 (0.04-0.08)	
8	3100	0.08 (0.05-0.10)	2700	0.08 (0.05-0.10)	2500	0.06 (0.04-0.08)	
10	2700	0.09 (0.05-0.11)	2300	0.09 (0.05-0.11)	2200	0.07 (0.04-0.09)	
12	2200	0.09 (0.05-0.11)	1900	0.09 (0.05-0.11)	1800	0.07 (0.04-0.09)	
16	1700	0.12 (0.10-0.14)	1500	0.12 (0.10-0.14)	1400	0.08 (0.06-0.10)	

	オーステナイト系	ステンレス鋼 (≦200HB)	ねずみ鋳鉄 (≦35	0MPa)	ダクタイル鋳鉄 (≦450MPa)		
被削材	SUS304, SUS310	6 等	FC300等		FCD450等		
DC	回転速度 (min ⁻¹) 送り量 (mm/rev)		回転速度 (min ⁻¹)	送り量 (Min.ーMax.) (mm/rev)	回転速度 (min ⁻¹)	送り量 (Min.ーMax.) (mm/rev)	
3	1500	0.04 (0.02-0.06)	7900	0.06 (0.04-0.08)	5800	0.06 (0.04-0.08)	
4	1100	0.04 (0.02-0.06)	5900	0.06 (0.04-0.08)	4300	0.06 (0.04-0.08)	
5	1200	0.06 (0.04-0.08)	5000	0.07 (0.05-0.09)	3800	0.07 (0.05-0.09)	
6	1000	0.06 (0.04-0.08)	4200	0.07 (0.05-0.09)	3100	0.07 (0.05-0.09)	
7	900	0.06 (0.04-0.08)	3600	0.08 (0.05-0.10)	2700	0.07 (0.05-0.09)	
8	790	0.06 (0.04-0.08)	3100	0.08 (0.05-0.10)	2300	0.07 (0.05-0.09)	
10	630	0.06 (0.04-0.08)	2700	0.09 (0.05-0.11)	1900	0.08 (0.05-0.10)	
12	530	0.06 (0.04-0.08)	2200	0.09 (0.05-0.11)	1500	0.08 (0.05-0.10)	
16	390	0.08 (0.06-0.10)	1700	0.12 (0.10-0.14)	1100	0.11 (0.09-0.13)	

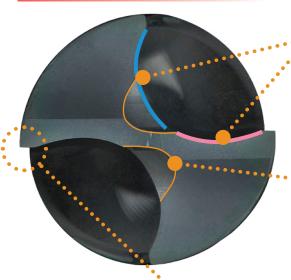
- 注1 下穴径Dに対して面取り加工を行う場合は、工具径(加工径)DCをD<DC<2Dの範囲でご使用ください。
- 注2 V満加工および横送り面取り加工を行う場合は、切削条件を下げてご使用ください。


■上手な使い方

座ぐり加工用超硬ソリッドドリル

MFE シリーズ

多才な加工で工程短縮


傾斜面や曲面におけるロングドリルの下穴加工にも最適です。 欠損しにくい刃先形状により、いろいろな座ぐり加工を実現します。

穴加	穴矯正	
薄板	交差穴	偏心穴・鋳抜き穴

フラットな先端によりバリを抑制します。 独自なフォルムにより高い精度で、偏心穴・鋳抜き穴の矯正が可能です。

※外周方向の切込みはできません。

特長 小径サイズ ドリル径DC<3mm

新溝設計

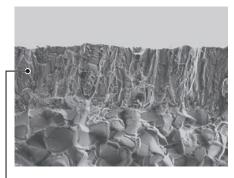
異なる曲率のRを組み合わせた溝形状により、高い切りくず 処理性を確保します。

シンニング形状

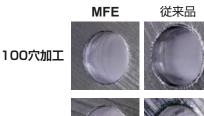
中心部の切りくずポケットを確保しながら、R形状により切りくずをスムーズにカールさせ、切削抵抗を低減します。

MFE

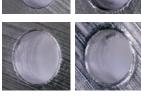
従来品


シャープな独自切れ刃形状

切れ刃コーナ部にフラットランドを設けることにより、強度を確保しつつ、切れ刃全域においてシャープさを維持することで、バリを低減します。


シャープな切れ刃を維持し長寿命を実現

PVDコーテッド超硬材種 **DP102A**

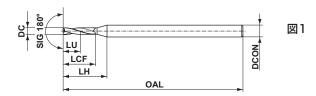

小径穴加工での低速低送り条件による耐摩耗性を大幅に向上させたドリル専用PVDコーテッド超硬材種DP102Aは、シャープな切れ刃でも密着力が高く安定加工を実現します。

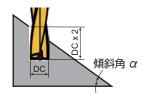
- Al-Cr-N系コーティング

500穴加工

〈切削条件>

使用工具: MFE0100X02S030 被削材: SUS304 穴深さ: 2mm 切削速度: vc=25m/min 送り量: fr=0.007mm/rev 使用機械: 立形MC(BT40)



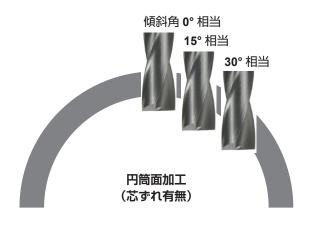


	0.75≦DC≦2.95		
1//	0 -0.014		
	DCON=3	DCON=4	
h6‡	0 -0.006	0 -0.008	

外部給油形	0.00		0.000	·					(mm)
	ħΠ	在庫							()
	加工穴深さ								
DC	次 深	DP102A	呼 び 記 号	LU	LCF	LH	OAL	DCON	図
)P1							
0.75	(L/D)		MEEOOZEVOOCOOO	4.5	2	7.7	4.5	2	
0.75	2	•	MFE0075X02S030	1.5	3 3.2	7.7	45	3	1
0.8 0.85	2		MFE0080X02S030 MFE0085X02S030	1.6 1.7	3.4	7.8 7.9	45 45	3	1
0.65	2		MFE0090X02S030	1.7	3.6	8	45	3	1
0.95	2		MFE0095X02S030	1.9	3.8	8.1	45	3	1
1	2		MFE0100X02S030	2	4	8.2	45	3	1
1.05	2		MFE0105X02S030	2.1	4.2	8.3	45	3	1
1.1	2		MFE0110X02S030	2.2	4.4	8.4	45	3	1
1.15	2	•	MFE0115X02S030	2.3	4.6	8.6	45	3	1
1.2	2		MFE0120X02S030	2.4	4.8	8.7	45	3	1
1.25	2	•	MFE0125X02S030	2.5	5	8.8	45	3	1
1.3	2	•	MFE0130X02S030	2.6	5.2	8.9	45	3	1
1.35	2	•	MFE0135X02S030	2.7	5.4	9	45	3	1
1.4	2	•	MFE0140X02S030	2.8	5.6	9.1	45	3	1
1.45	2	•	MFE0145X02S030	2.9	5.8	9.2	45	3	1
1.5	2	•	MFE0150X02S030	3	6	9.3	45	3	1
1.55	2	•	MFE0155X02S030	3.1	6.2	9.4	45	3	1
1.6	2	•	MFE0160X02S030	3.2	6.4	9.5	45	3	1
1.65	2	•	MFE0165X02S030	3.3	6.6	9.6	45	3	1
1.7	2	•	MFE0170X02S030	3.4	6.8	9.7	45	3	1
1.75	2	•	MFE0175X02S030	3.5	7	9.8	45	3	1
1.8	2		MFE0180X02S030	3.6	7.2	9.9	45	3	1
1.85	2	•	MFE0185X02S030	3.7	7.4	10	45	3	1
1.9	2		MFE0190X02S030	3.8	7.6	10.2	45	3	1
1.95	2	•	MFE0195X02S030	3.9	7.8	10.3	45	3	1
2.05	2		MFE0200X02S040 MFE0205X02S040	4.1	8 8.2	12.2 12.3	50 50	4	1
2.05	2		MFE0205X02S040	4.1	8.4	12.3	50	4	1
2.15	2		MFE0215X02S040	4.3	8.6	12.6	50	4	1
2.13	2		MFE0220X02S040	4.4	8.8	12.7	50	4	1
2.25	2	•	MFE0225X02S040	4.5	9	12.8	50	4	1
2.3	2	•	MFE0230X02S040	4.6	9.2	12.9	50	4	1
2.35	2		MFE0235X02S040	4.7	9.4	13	50	4	1
2.4	2		MFE0240X02S040	4.8	9.6	13.1	50	4	1
2.45	2	•	MFE0245X02S040	4.9	9.8	13.2	50	4	1
2.5	2	•	MFE0250X02S040	5	10	13.3	50	4	1
2.55	2	•	MFE0255X02S040	5.1	10.2	13.4	50	4	1
2.6	2	•	MFE0260X02S040	5.2	10.4	13.5	50	4	1
2.65	2	•	MFE0265X02S040	5.3	10.6	13.6	50	4	1
2.7	2	•	MFE0270X02S040	5.4	10.8	13.7	50	4	1
2.75	2	•	MFE0275X02S040	5.5	11	13.8	50	4	1
2.8	2	•	MFE0280X02S040	5.6	11.2	13.9	50	4	1
2.85	2	•	MFE0285X02S040	5.7	11.4	14	50	4	1
2.9	2		MFE0290X02S040	5.8	11.6	14.2	50	4	1
2.95	2		MFE0295X02S040	5.9	11.8	14.3	50	4	1

被削材 SS400、S10C等 S45C、SCM440等 SNCM439等 SNCM439 SNCM43 SNC	-Max.) (-0.050) (-0.050) (-0.050) (-0.050) (-0.060) (-0.070) (-0.080) (-0.100)	
FUJLIG DC	-Max.) (-0.050) (-0.050) (-0.050) (-0.050) (-0.060) (-0.070) (-0.080) (-0.100)	
FUJL/程 DC 加工穴深さ (I/d) 回転速度 (min⁻¹) 平坦面 α=0° 送り量 (Min.−Max.) (mm/rev) 回転速度 (min⁻¹) 平坦面 α=0° 送り量 (Min.−Max.) (mm/rev) 回転速度 (min⁻¹) 平坦面 α=0° 送り量 (Min.−Max.) (mm/rev) 回転速度 (min⁻¹) 平坦面 α=0° 送り量 (Min.−Max.) (mm/rev) 回転速度 (min⁻¹) 平坦面 α=0° (min⁻¹) 回転速度 (min⁻¹) 平坦面 α=0° (min⁻²) 回転速度 (min⁻²) Pun α=0	-Max.) (-0.050) (-0.050) (-0.050) (-0.050) (-0.060) (-0.070) (-0.080) (-0.100)	
DC	-Max.) (-0.050) (-0.050) (-0.050) (-0.050) (-0.060) (-0.070) (-0.080) (-0.100)	
DC (I/d) (min f) (min f/ev) (min f/ex)	(av) (a) -0.050) (b) -0.050) (c) -0.050) (c) -0.060) (c) -0.070) (c) -0.080) (c) -0.100)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(-0.050) (-0.050) (-0.060) (-0.070) (-0.080) (-0.100)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(-0.050) (-0.060) (-0.070) (-0.080) (-0.100)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(-0.060) (-0.070) (-0.080) (-0.100)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(-0.070) (-0.080) (-0.100)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(-0.080) (-0.100)	
4.0≤25900 0.080 ($0.060-0.100$)5900 0.080 ($0.060-0.100$)5100 0.080 (0.060 5.0≤2 4700 0.100 ($0.080-0.130$) 4700 0.100 ($0.080-0.130$) 4100 0.100 (0.080 6.0≤2 3900 0.130 ($0.100-0.150$) 3900 0.130 ($0.100-0.150$) 3400 0.130 (0.100 8.0≤2 2900 0.150 ($0.130-0.170$) 2900 0.150 ($0.130-0.170$) 2500 0.150 (0.130 10.0≤2 2300 0.170 ($0.150-0.200$) 2300 0.170 ($0.150-0.200$) 2000 0.170 (0.150 12.0≤2 1900 0.200 ($0.170-0.250$) 1900 0.200 ($0.170-0.250$) 1700 0.200 (0.170 16.0≤2 1400 0.250 ($0.200-0.300$) 1400 0.250 ($0.200-0.300$) 1200 0.250 (0.250 20.0≤2 1100 0.300 ($0.250-0.350$) 1100 0.300 ($0.250-0.350$) 1000 0.300 (0.250	- 0.100)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 400)	
8.0≤22900 0.150 ($0.130-0.170$)2900 0.150 ($0.130-0.170$)2500 0.150 (0.130 10.0≤22300 0.170 ($0.150-0.200$)2300 0.170 ($0.150-0.200$)2000 0.170 ($0.150-0.200$)12.0≤21900 0.200 ($0.170-0.250$)1900 0.200 ($0.170-0.250$)1700 0.200 ($0.170-0.250$)16.0≤21400 0.250 ($0.200-0.300$)1400 0.250 ($0.200-0.300$)1200 0.250 ($0.200-0.300$)20.0≤21100 0.300 ($0.250-0.350$)1100 0.300 ($0.250-0.350$)1000 0.300 ($0.250-0.350$)	-0.130)	
10.0 ≤2 2300 0.170 (0.150-0.200) 2300 0.170 (0.150-0.200) 2000 0.170 (0.150 12.0 ≤2 1900 0.200 (0.170-0.250) 1900 0.200 (0.170-0.250) 1700 0.200 (0.170 16.0 ≤2 1400 0.250 (0.200-0.300) 1400 0.250 (0.200-0.300) 1200 0.250 (0.200 20.0 ≤2 1100 0.300 (0.250-0.350) 1100 0.300 (0.250-0.350) 1000 0.300 (0.250-0.350)	,	
12.0 ≤ 2 19000.200 (0.170 − 0.250)19000.200 (0.170 − 0.250)17000.200 (0.170 − 0.250)16.0 ≤ 2 14000.250 (0.200 − 0.300)14000.250 (0.200 − 0.300)12000.250 (0.200 − 0.300)20.0 ≤ 2 11000.300 (0.250 − 0.350)11000.300 (0.250 − 0.350)10000.300 (0.250 − 0.350)	,	
16.0 ≤ 2 14000.250 (0.200 − 0.300)14000.250 (0.200 − 0.300)12000.250 (0.200 − 0.300)20.0 ≤ 2 11000.300 (0.250 − 0.350)11000.300 (0.250 − 0.350)10000.300 (0.250 − 0.350)		
20.0 ≤2 1100 0.300 (0.250−0.350) 1100 0.300 (0.250−0.350) 1000 0.300 (0.250	,	
オーステナイト系ステンレス鋼 (≦200HB) ねずみ鋳鉄 (≦350MPa) ダクタイル鋳鉄 (≦450MPa)	-0.350)	
13 XX X 11 XX X 2 2 X X X X X X X X X X X	ダクタイル鋳鉄 (≦450MPa)	
被削材		
SUS304、SUS316等 FC300等 FCD450等		
ドリル径 加工穴深さ 回転速度 平坦面 $\alpha=0^\circ$ 中国 $\alpha=0^\circ$ 平坦面 $\alpha=0^\circ$ 平坦面 $\alpha=0^\circ$ 中国 $\alpha=0^\circ$ 平坦面 $\alpha=0^\circ$ 中国 $\alpha=$		
DC		
0.75 ≦2 10600 0.007 (0.003−0.011) 23300 0.030 (0.010−0.050) 16900 0.010 (0.005	,	
1.0 \leq 2 7900 0.007 (0.003−0.011) 17500 0.030 (0.010−0.050) 12700 0.010 (0.005	,	
1.5 ≤2 5300 0.010 (0.005 −0.015) 12200 0.035 (0.015 −0.055) 10000 0.020 (0.010	,	
2.0 ≤2 4700 0.015 (0.010−0.020) 9500 0.040 (0.020−0.060) 8700 0.030 (0.015	,	
2.5 ≤2 3800 0.015 (0.010−0.020) 7900 0.050 (0.030−0.070) 7300 0.045 (0.025	,	
3.0 ≤2 3100 0.020 (0.010-0.030) 7900 0.060 (0.040-0.080) 6800 0.050 (0.040	,	
4.0 ≦2 2300 0.030 (0.020−0.040) 5900 0.080 (0.060−0.100) 5500 0.060 (0.050	/	
5.0 ≦2 1900 0.040 (0.030−0.050) 4700 0.100 (0.080−0.120) 4400 0.080 (0.060		
6.0 ≦2 1500 0.050 (0.040−0.060) 3900 0.120 (0.100−0.140) 3700 0.100 (0.080	,	
8.0 ≤2 1100 0.060 (0.050-0.080) 2900 0.140 (0.120-0.160) 2700 0.120 (0.100	-0.150)	
10.0 ≦2 950 0.080 (0.060−0.100) 2300 0.160 (0.140−0.180) 2200 0.150 (0.120	- 0.180)	
12.0 ≦2 790 0.100 (0.080−0.120) 1900 0.180 (0.160−0.200) 1800 0.180 (0.150	0.000)	
16.0 ≦2 590 0.120 (0.100−0.150) 1400 0.200 (0.180−0.240) 1300 0.200 (0.180	-0.200)	
20.0 ≤2 470 0.150 (0.120-0.200) 1100 0.240 (0.200-0.280) 1100 0.250 (0.200		

被削	削材	アルミニウム合金 (Si<5%)		
		A6061、A7075等		
ドリル径 DC	加工穴深さ (I/d)	回転速度 (min ⁻¹)	平坦面 α=0° 送り量 (MinMax.) (mm/rev)	
0.75	≦2	42400	0.020 (0.010-0.030)	
1.0	≦2	31800	0.020 (0.010-0.030)	
1.5	≦2	21200	0.020 (0.010-0.030)	
2.0	≦2	17500	0.050 (0.030-0.070)	
2.5	≦2	14000	0.060 (0.040-0.090)	
3.0	≦2	11600	0.060 (0.040-0.090)	
4.0	≦2	8700	0.080 (0.060-0.100)	
5.0	≦2	7000	0.100 (0.080-0.130)	
6.0	≦2	5800	0.130 (0.100-0.160)	
8.0	≦2	4300	0.160 (0.130-0.200)	
10.0	≦2	3500	0.200 (0.160-0.240)	
12.0	≦2	2900	0.240 (0.200-0.280)	
16.0	≦2	2100	0.280 (0.240-0.320)	
20.0	≦2	1700	0.320 (0.280-0.360)	



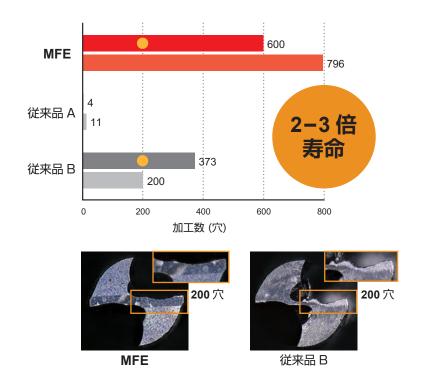
- 注1 推奨穴深さはDC×2です。傾斜面加工時は被削材最上面からの深さです。(図参照)
- 注2 上記切削条件表は平坦面への穴あけ加工を前提としたものです。 傾斜面に対する穴あけ加工時は傾斜角度により送り速度を調整してください。 傾斜角αが30°以下の場合は、送り速度の70%以下を目安に調整してください。 傾斜角αが30°を超える場合は、送り速度の50%以下を目安に調整してください。
- 注3 本製品は、穴あけ加工用工具です。横送り加工やヘリカル加工などには使用できません。

切削性能

ステンレス鋼SUS304における抜けバリ比較

独自切れ刃形状により、抜けバリを抑制

傾斜角	MFE	従来品 A	従来品 B
傾斜角 0° 相当 穴深さ= 4mm			
傾斜角 15° 相当 穴深さ≒ 5mm			Actor
傾斜角 30° 相当 穴深さ≒ 7mm			No.


<切削条件>


使用工具: MFE0200X02S040被削材: SUS304 切削速度: vc=30m/min

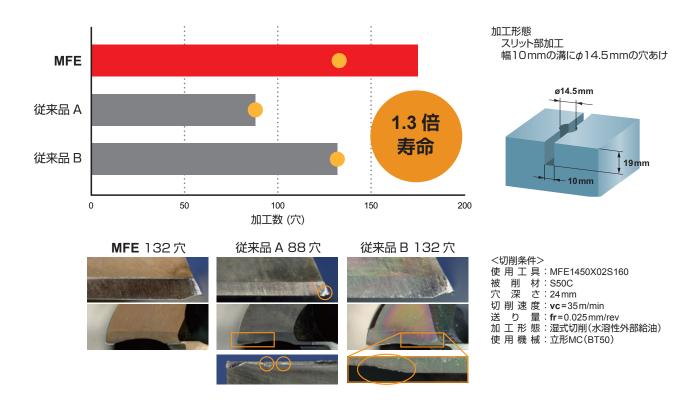
送り量: fr=0.01mm/rev 加工形態: 湿式切削(水溶性外部給油) 使用機械: 立形MC(BT40)

ステンレス鋼SUS304における寿命比較

小型自動旋盤での円筒面加工においても、優れた耐欠損性を実現

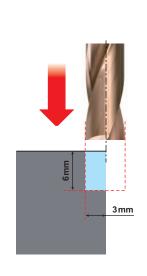
<切削条件>

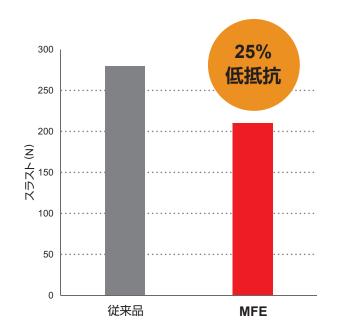
使用工具: MFE0080X02S030 被 削 材:SUS304


切削速度: vc=15m/min 送り量: fr=0.01mm/rev 加工形態: 湿式切削(不水溶性外部給油)

使 用 機 械:小型自動旋盤

切削性能


炭素鋼S50Cにおけるスリット部加工


DP1020により、不安定な加工形態でも長寿命を実現

半割り穴加工でのスラスト比較

Zシンニングにより、低スラストを実現

<切削条件>

使用工具:MFE0600X02S060

被削材: S50C 穴深さ: 6mm (I=DC× 切削速度: **vc**=50m/min 深 さ:6mm (I=DC×1) り 量:fr=0.07mm/rev

小型自動旋盤用工具

C395J カタログ 2017.6

B210J-F TOOL NEWS 2017.4

小型自動旋盤用工具

小型自動旋盤用工具シリーズ

B214J TOOL NEWS

B223J TOOL NEWS

B233J TOOL NEWS

難削材旋削加工用インサートシリーズ

リーディングドリルシリーズ 🎵 📙 🗗

座ぐり加工用超硬ソリッドドリル

安全について

●対れ刃や切りくずには直接素手で触らないでください。●推奨条件の範囲内で使用し、工具交換は早めに行ってください。●高温の切りくずが飛散したり、長く伸びた切りくずが排出されることがあります。安全カパーや保護めがねなどの保護具を使用してください。●不水溶性切削油剤を使用する場合は、防火対策を必ず行ってください。●インサートや部品の取付けは、付属のレンチやドライバーを用いて確実に取り付けてください。●工具を回転して使用する場合、必ず試運転を実施し振れ、振動、異常音がないことを確認してください。

三菱マテリアル株式会社

加工事業カンパニー

営 業 本 部 営営 部 03-5819-5251 部 03-5819-5241 北 関 東 営 業 所 0285-25-8380 新 潟 営 業 所 025-247-0155 上 田 営 業 所 0268-23-7788 南 関 東 営 業 所 045-332-6925 富 士 営 業 所 0545-65-8817 グローバルキーアカウント部 03-5819-7057 営 業 企 画 部 03-5819-8770 苫 小 牧 営 業 所 0144-57-7007 仙 台 営 業 所 022-221-3230

所 053-450-2030 課 052-684-5536 課 052-684-5535 三 河 営 業 所 0566-77-3411

大阪支店 営業所 082-221-4457 営業所 092-436-4664 京 滋 営 業 所 077-554-8570 広明 石 営 業 所 078-934-6815 九 課 06-6355-1051 業 課 06-6355-1050

0120-34-4159

