DATOS TÉCNICOS

LISTA DE SÍMBOLOS DE PROPIEDADES DEL CUMPLEN CON ISO13399Q002
SOLUCIÓN DE PROBLEMAS EN TORNEADOQ006
CONTROL DE VIRUTA PARA TORNEADOQ008
EFECTOS DE LAS CONDICIONES DE CORTE PARA TORNEADOQ009
FUNCIÓN DE LAS CARACTERÍSTICAS DE LAS HERRAMIENTAS PARA TORNEADO ··· Q011
FÓRMULAS PARA CALCULAR LA POTENCIA DE CORTEQ015
SOLUCIÓN DE PROBLEMAS EN ROSCADOQ016
DIÁMETROS DE BROCAS PARA AGUJEROS PILOTOSQ017
SOLUCIÓN DE PROBLEMAS EN FRESADO PLANEADOQ018
FUNCIÓN DE LAS CARACTERÍSTICAS DE LAS HERRAMIENTAS PARA FRESADO···Q019
FÓRMULAS PARA FRESADO PLANEADOQ022
SOLUCIÓN DE PROBLEMAS PARA FRESAS CON MANGOQ024
TERMINOLOGÍA DE FRESASQ025
TIPOS Y FORMAS DE FRESASQ026
SELECCIONAR EL VALOR DEL PASO ·······Q027
SOLUCIÓN DE PROBLEMAS EN PERFORADOQ028
DESGASTE DE LA BROCA Y DAÑOS DEL FILO DE CORTEQ029
TERMINOLOGÍA DE BROCAS Y CARACTERÍSTICAS DE CORTEQ030
FÓRMULAS PARA PERFORADO ·······Q033
LISTA DE REFERENCIA CRUZADA DE MATERIALES METÁLICOSQ034
MATRICES
TABLA DE COMPARACIÓN DE DUREZASQ041
TABLA TOLERANCIA DE AGUJEROSQ042 TABLA DE TOLERANCIASQ044
TABLA DE TOLERANCIAS ··········Q044
TAMAÑO DEL ORIFICIO DEL PERNO DE CABEZA HUECA HEXAGONAL···Q046
CONOS ESTÁNDAR ·······Q047
UNIDADES DEL SISTEMA INTERNACIONALQ048
DESGASTE Y ROTURA DE LA HERRAMIENTAQ049
MATERIALES DE CORTE Q050 GRUPOS DE GRADOS Q051
GRUPOS DE GRADOS ·······Q051
TABLA DE COMPARACIÓN DE GRADOSQ052
TABLA DE COMPARACIÓN DE ROMPEVIRUTASQ058

LISTA DE SÍMBOLOS DE PROPIEDADES DEL CUMPLEN CON ISO13399

Alfabetico

Fuente: norma ISO13399

URL: https://www.iso.org/search/x/query/13399

ISO13399 Símbolos de propiedade	Contenido	Nombres en inglés
ADJLX	Límite de ajuste máximo	adjustment limit maximum
ADJRG	Área de ajuste	adjustment range
ALF	Ángulo de inclinación radial	clearance angle radial
ALP	Ángulo de inclinación axial	clearance angle axial
AN	Ángulo de incidencia mayor	clearance angle major
ANN	Ángulo de incidencia del filo del wiper	clearance angle minor
APMX	Profundidad máxima de corte	depth of cut maximum
AS	Angulo de incidencia del filo del wiper	clearance angle wiper edge
ASP	Ajuste de cabeza del tornillo	adjusting screw protrusion
AZ	Profundidad máxima vertical	plunge depth maximum
В	Ancho del mango	shank width
BBD	Equilibrado por diseño	balanced by design
ВСН	Longitud de chaflán de esquina	corner chamfer length
BD	Diámetro del cuerpo	body diameter
BDX	Diámetro máximo del cuerpo	body diameter maximum
BHCC	Recuento de círculos del orificio del perno	bolt hole circle count
BHTA	Ángulo cónico del cuerpo	body half taper angle
ВМС	Código de material del cuerpo	body material code
BS	Longitud de wiper	wiper edge length
BSR	Radio de wiper	wiper edge radius
CASC	Código de tamaño de cartucho	cartridge size code
СВ	Recuento de caras del rompevirutas	chip breaker face count
CBDP	Profundidad del agujero de conexión	connection bore depth
CBMD	Designación de fabricantes de rompevirutas	chip breaker manufacturers designation
СВР	Propiedades del rompevirutas	chip breaker property
CCMS	Código de conexión de la máquina	connection code machine side
ccws	Código de conexión de la pieza	connection code workpiece side
CCP	Propiedades del esquina de chaflán	chamfer corner property
CDI	Diámetro de corte de insertos	insert cutting diameter
CDX	Máxima profundidad de ranura	cutting depth maximum
CEATC	Código del tipo de ángulo de filo de la herramienta	tool cutting edge angle type code
CECC	Código de forma del filo	cutting edge condition code
CEDC	Cantidad de filos	cutting edge count
CF	Biselado de puntos	spot chamfer
CHW	Ancho del chaflán de esquina	corner chamfer width
CICT	Cantidad de dientes	cutting item count
CNC	Cantidad de filos	corner count
CND	Diámetro de entrada del refrigerante	coolant entry diameter
CNSC	Código de estilo de entrada del refrigerante	coolant entry style code
CNT	Tamaño de la rosca de entrada del refrigerante	coolant entry thread size
CP	Presión del refrigerante	coolant pressure
CRE	Radio de puntos	spot radius
CRKS	Tamaño de rosca en la perilla de retención	connection retention knob thread size
CSP	Propiedades del suministro del refrigerante	coolant supply property
СТР	Propiedades del recubrimiento	coating property
СТХ	Dirección X de traslación del punto de corte	cutting point translation X-direction
CTY	Dirección Y de traslación del punto de corte	cutting point translation Y-direction
CUTDIA	Diámetro máximo de corte	work piece parting diameter maximum
CUB	Base de la unidad de conexión	connection unit basis
CW	Ancho de corte	cutting width
CWX	Ancho máxima de corte	cutting width maximum
CXD	Diámetro de salida del refrigerante	coolant exit diameter

ISO13399 Símbolos de propiedade	Contenido	Nombres en inglés
CXSC	Código de estilo de salida del refrigerante	coolant exit style code
CZC	Código del tamaño de conexión	connection size code
D1	Diámetro de barreno de fijación	fixing hole diameter
DAH	Diámetro de acceso al barreno	diameter access hole
DAXN	Ranura axial fuera del diámetro mínimo	axial groove outside diameter minimum
DAXX	Ranura axial fuera del diámetro máximo	axial groove outside diameter maximum
DBC	Diámetro efectivo del perno	diameter bolt circle
DC	Diámetro de corte	cutting diameter
DCB	Diámetro de agujero de conexión	connection bore diameter
DCBN	Diámetro mínimo de agujero de conexión	connection bore diameter minimum
DCBX	Diámetro máximo de agujero de conexión	connection bore diameter maximum
DCC	Código de estilo de configuración de diseño	design configuration style code
DCCB	Diámetro del tornillo de fijación del asiento	counterbore diameter connection bore
DCIN	Diámetro de corte interior	cutting diameter internal
DCINN	Diámetro mínimo de corte interior	cutting diameter internal minimum
DCINX	Diámetro máximo de corte interior	cutting diameter internal maximum
DCN	Diámetro mínimo de corte	cutting diameter minimum
DCON	Diámetro de conexión	connection diameter
DCONMS	Diámetro de conexión de la máquina	connection diameter machine side
DCONWS	Diámetro de conexión de la pieza	connection diameter workpiece side
DCSC	Código de tamaño de diámetro de corte	cutting diameter size code
DCSFMS	Diámetro de superficie de contacto de la máquina	contact surface diameter machine side
DCX	Diámetro máximo de corte	cutting diameter maximum
DF	Diámetro exterior de la brida	flange diameter
DHUB	Diámetro del cubo	hub diameter
DMIN	Diámetro mínimo de corte	minimum bore diameter
DMM	Diámetro de mango	shank diameter
DN	Diámetro de cuello	neck diameter
DRVA	Ángulo del accionadora	drive angle
EPSR	Inserto agudo	insert included angle
FHA	Ángulo helicoidal de labio	flute helix angle
FHCSA	Ángulo del avellanado del barreno de fijación	fixing hole countersunk angle
FHCSD	Diámetro de avellanado del barreno de fijación	fixing hole countersunk diameter
FLGT	Espesor del brida	flange thickness
FMT	Tipo de forma	form type
FXHLP	Propiedades del barreno de fijación	fixing hole property
GAMF	Ángulo de desprendimiento radial	rake angle radial
GAMN	Ángulo de desprendimiento radial normal	rake angle normal
GAMO	Ángulo de desprendimiento radial perpendicular	rake angle orthogonal
GAMP	Ángulo axial	rake angle axial
GAN	Ángulo de inclinación	insert rake angle
H	Altura del mango	shank height
HA	Altura del teórico de rosca	thread height theoretical
HAND	Mano	hand
НВН	Altura offset de la parte inferior de la cabeza	head bottom offset height
HBKL	Longitud de offset de la cabeza	head back offset length
HBKW	Ancho offset de la cabeza	head back offset width
HBL	Longitud de offset de la parte inferior de la cabeza	head bottom offset length
HC	Altura del actual de rosca	thread height actual
HF	Altura funcional	functional height
HHUB	Altura del cubo	hub height
НТВ	Altura del cuerpo	body height
IC	Diámetro de círculo inscrito	inscribed circle diameter
IFS	Código de tipo de montaje del inserto	insert mounting style code
IIC	Código de interfaz del inserto	insert interface code
INSL	Longitud del inserto	insert length
KAPR	Ángulo de filo de la herramienta	tool cutting edge angle
KCH	Ángulo de chaflán de esquina	corner chamfer angle

LISTA DE SÍMBOLOS DE PROPIEDADES DEL CUMPLEN CON ISO13399

ISO13399 imbolos de propiedade	Contenido	Nombres en inglés
KRINS	Angulo mayor del filo	cutting edge angle major
KWL	Longitud de asiento de la cuña	keyway length
KWW	Ancho de asiento de la cuña	keyway width
KYP	Propiedades del asiento de la cuña	keyway property
L	Longitud del filo	cutting edge length
LAMS	Ángulo de inclinación	inclination angle
LB	Longitud del cuerpo	body length
LBB	Ancho de rompevirutas	chip breaker width
LBX	Longitud máxima del cuerpo	body length maximum
LCCB	Profundidad de tornillo de fijación del asiento	counterbore depth connection bore
LCF	Longitud de labio	length chip flute
LDRED	Cuello Largo	reduced body diameter length
LE	Longitud efectiva del filo	cutting edge effective length
LF	-	functional length
LFA	Longitud funcional dimensión a en If	a dimension on If
LH	Longitud de la cabeza	head length
LPR	Longitud de protuberancia	protruding length
LS	Longitud del mango	shank length
LSC	Longitud de sujeción	clamping length
LSCN	Longitud mínimo de sujeción	clamping length minimum
LSCX	Longitud máxima de sujeción	clamping length maximum
LTA	Longitud de LTA (longitud de la MCS al CRP)	LTA length (length from MCS to CRP)
LU	Longitud útil	usable length
LUX	Máxima longitud útil	usable length maximum
M	Dimensión m	m-dimension
M2	Dimensión m2	distance between the nominal inscribed circle and the corner of an insert that has the secondary included
MHA	Ángulo del agujero de montaje	mounting hole angle
MHD	Distancia del agujero de montaje	mounting hole distance
мнн	Altura del agujero de montaje	mounting hole height
MIID	Identificación de inserto maestro	master insert identification
MTP	Código de tipo de sujeción	clamping type code
NCE	Recuento de fin de corte	cutting end count
NOF	Cantidad de labios	flute count
NOI	Recuento de índice de inserto	insert index count
NT	Recuento de dientes	tooth count
OAH	Altura total	overall height
OAL		overall length
OAW	Longitud total	
PDPT	Ancho total	overall width
	Profundidad de perfíl del inserto	profile depth insert
PDX	Distancia perfíl ex	profile distance ex
PDY	Distancia perfíl ey	profile distance ey
PFS	Código de tipo de perfíl	profile style code
PL	Longitud de punta	point length
PNA	Ángulo de contorno incluído	profile included angle
PSIR	Ángulo de avance de la herramienta	tool lead angle
PSIRL	Angulo mayor del filo izquierdo	cutting edge angle major left hand
PSIRR	Angulo mayor del filo derecho	cutting edge angle major right hand
RAL	Angulo de despeje izquierdo	relief angle left hand
RAR	Angulo de despeje derecho	relief angle right hand
RCP	Propiedad de esquina redondeada	rounded corner property
RE	Radio de esquina	corner radius
REL	Radio de esquina izquierdo	corner radius left hand
RER	Radio de esquina derecho	corner radius right hand
RMPX	Ángulo máximo de fresado en rampa	ramping angle maximum
RPMX	Revolución máxima aceptable	rotational speed maximum
INFINA	·	
S	Espesor del inserto	insert thickness

ISO13399 Símbolos de propiedade	Contenido	Nombres en inglés
SC	Código de forma del inserto	insert shape code
SDL	Longitud del diámetro del escalón	step diameter length
SIG	Ángulo de punta	point angle
SSC	Código de tamaño del asiento del inserto	insert seat size code
SX	Código de forma del sección transversal de mango	shank cross section shape code
TC	Clases de tolerancia del inserto	tolerance class insert
TCE	Código de filo con punta	tipped cutting edge code
TCTR	Clases de tolerancia de la rosca	thread tolerance class
TD	Diámetro de rosca	thread diameter
THFT	Tipo de forma de rosca	thread form type
THL	Longitud del roscado	threading length
THLGTH	Longitud del rosca	thread length
THSC	Código de forma del portaherramientas	tool holder shape code
THUB	Espesor del cubo	hub thickness
TP	Paso de rosca	thread pitch
TPI	Roscas por pulgadas	threads per inch
TPIN	Mínimo Roscas por pulgadas	threads per inch minimum
TPIX	Máxima roscas por pulgadas	threads per inch maximum
TPN	Paso mínimo de rosca	thread pitch minimum
TPT	Tipo de profile de rosca	thread profile type
TPX	Paso máximo de rosca	thread pitch maximum
TQ	Torsión	torque
TSYC	Código de tipo de herramientas	tool style code
TTP	Tipo de rosca	thread type
ULDR	Longitud útil / Rango de diámetro	usable length diameter ratio
UST	Sistema de la unidad	unit system
W1	Ancho del inserto	insert width
WEP	Propiedades del filo del wiper	wiper edge property
WF	Ancho funcional	functional width
WF2	Distancia entre el punto de referencia de corte y la superficie de asiento delantera de una herramienta de torneado	distance between the cutting reference point and the front seating surface of a turning tool
WFS	Ancho funcional secundario	functional width secondary
WT	Peso del artículo	weight of item
ZEFF	Contador de filos frontal efectivos	face effective cutting edge count
ZEFP	Contador de filos periféricos efectivos	peripheral effective cutting edge count
ZNC	Contador de filos central	cutting edge center count
ZNF	Contador de inserto frontal de conexión	face mounted insert count
ZNP	Contador de inserto periféricos de conexión	peripheral mounted insert count

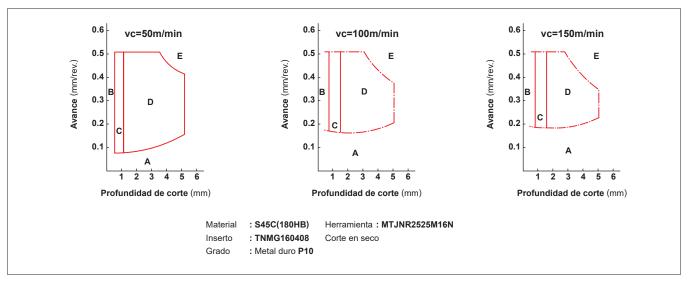
LISTA DE SÍMBOLOS DE REFERENCIA DEL CUMPLEN CON ISO13399

ISO13399 Símbolos de referencia	Contenido	Nombres en inglés
CIP	Sistema de coordenadas en curso	Coordinate system In Process
CRP	Punto de referencia de corte	Cutting Reference Point
CSW	Lado de la pieza del sistema de coordenadas	Coordinate System Workpiece side
MCS	Sistema de coordenadas de montaje	Mounting Coordinate System
PCS	Sistema de coordenadas primario	Primary Coordinate System

SOLUCIÓN DE PROBLEMAS EN TORNEADO

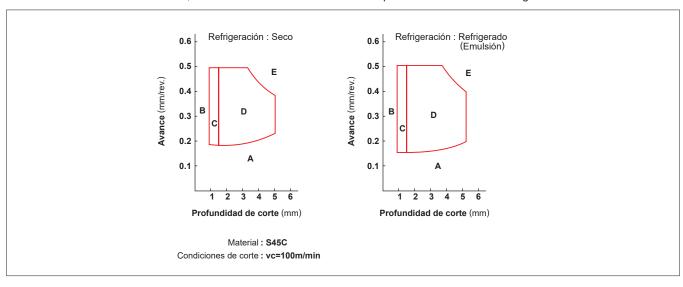
		Solución	5	Seled de g	cció rado	n O		Con de	dicie	ones te	5		E de	stilo la h	y d erra				Máqui de la	na, Insta herram	alación nienta
Pı	roblema	Factores	Seleccione un grado más duro	Seleccione un grado más tenaz	Seleccione un grado con mejor resistencia al choque térmico	Seleccione un grado con mejor resistencia a la adhesión de material	Nelocidad de corte	y Avance			Determinar corte	Seleccionar tipo de rompevirutas	Desprendimiento		jar \		Tipo de inserto	Mejora de la rigidez de la herramienta	Aumento de la rigidez de sujeción de la herramienta y de la pieza de trabajo	Reducir el voladizo de la herramienta	Reducir la potencia y fijación posterior
		Grado de herramienta inapropiado	•																		
nienta	Rápido desgaste del inserto	Geometría del filo de corte inapropiada										•	*	*	*	•					
herran		Velocidad de corte inapropiada					•	*			Refrigerado										
de la l	Grado de herramienta inapropiado		•																		
da útil	Rápido desgaste del inserto Microroturas o roturas del filo	Condiciones de corte inapropiadas						•	•												
e la vi		Pérdida de la robustez del filo										•		*		*					
rioro d	roturas del filo	Se producen fisuras térmicas			•		•	•	•	•	• Seco										
Deter		Se produce adhesión de material en el filo				•	*	*		•	Refrigerado										
		Falta de rigidez																•	•	•	•
ncia	Las dimensiones	Escasa precisión del inserto															•				
oleran	no son constantes	Gran resistencia al corte en el filo										•	•	•	•	•		•	•	•	•
Fuera de tolera	Es necesario ajustar con	Grado de herramienta inapropiado	•																		
Fue	frecuencia debido a su gran tamaño.	Condiciones de corte inapropiadas					•	*													
perficial		Se produce adhesión de material					*			•	Refrigerado										
ción sup	Terminación superficial pobre	Geometría del filo de corte inapropiada										•		*							
Termina		Vibración					•	•	•									•	•	•	•
Generación de calor	Un material sobre- calentado puede	Condiciones de corte inapropiadas					•	•	•												
Gener de c	causar terminación pobre y corta vida útil del inserto	Geometría del filo inapropiada										•	*			•					

		Solución	9	Seled de g	cció rado	n O	(Con de	dicio	ones rte	•		E de	stilo la h	y d erra	iseñ mie	io nta		Máqui de la	na, Insta herram	alación ienta
Pı	roblema	Factores	Seleccione un grado más duro	Seleccione un grado más tenaz	Seleccione un grado con mejor resistencia al choque térmico	Seleccione un grado con mejor resistencia a la adhesión de material		ouce ubir ajar			Determinar corte	Seleccionar tipo de rompevirutas	Desprendimiento		y Angulo de corte		Tipo de inserto	Mejora de la rigidez de la herramienta	Aumento de la rigidez de sujeción de la herramienta y de la pieza de trabajo	Reducir el voladizo de la herramienta	Reducir la potencia y fijación posterior
		Desgaste de la muesca	•																		
	Rebabas (acero, aluminio)	Condiciones de corte inapropiadas					•	*			Refrigerado										
		Geometría del filo de corte inapropiada										•	*	•	•	•					
, etc.		Condiciones de corte inapropiadas						•	•												
Rebabas, Roturas, etc.	Roturas en la pieza (fundición)	Geometría del filo de corte inapropiada										•	*	*	*	•					
ıbas, R		Se producen vibraciones																•	•	•	•
Reba		Calidad de la herramienta inapropiada				•															
	Rebabas	Condiciones de corte inapropiadas					*			•	Refrigerado										
	(acero medio)	Geometría del filo de corte inapropiada										•	*			•					
		Se producen vibraciones																•	•	•	•
		Condiciones de corte inapropiadas					•	*	*		Refrigerado										
ıción	Virutas largas	Buen control de la viruta										•									
ente evacua de virutas		Geometría del filo de corte inapropiada												•	•						
Deficiente evacuación de virutas		Condiciones de corte inapropiadas						•	•		• Seco										
Defic	Las virutas son cortas y dispersas	Poco control de viruta										•									
		Geometría del filo de corte inapropiada												*	*						


Q

■ROTURA DE VIRUTAS EN EL TORNEADO DE ACERO

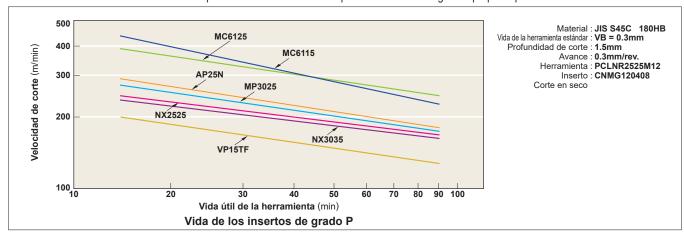
Tipo	Tipo A	Tipo B	Tipo C	Tipo D	Tipo E
Pequeña profundidad de corte d < 7mm	SA SA	MAS NALLEEN	The state of the s	3-0	
Profundidad de corte elevada d=7-15mm					
Longitud del rizo I	Sin rizo	l≥ 50mm	I ≤ 50mm 1-5 Rizo	≒ 1 Rizo	Menos que un Rizo y medio
Nota	Forma irregular continua Enredo entre la herramienta y la pieza	Forma continua y regularVirutas largas	Bueno	Bueno	Dispersión de las virutas Vibración Terminación superficial pobre Maximo

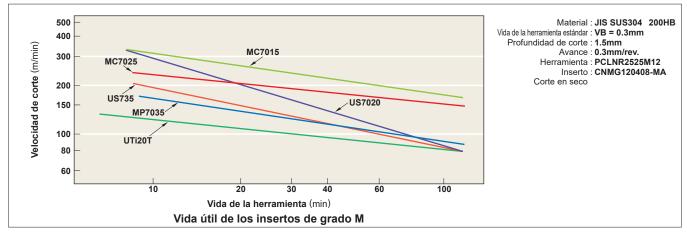

♠Área de control de la viruta y la velocidad de corte

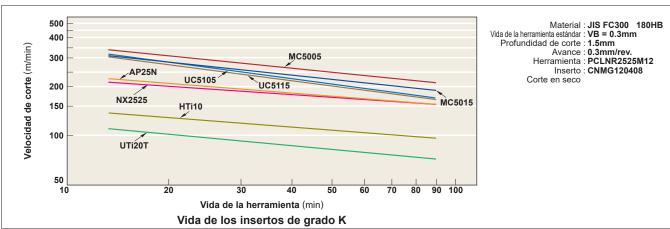
En general, cuando aumenta la velocidad de corte, el intervalo de control de virutas tiende a ser más pequeño.

● Efecto de la refrigeración sobre el área de control de virutas de un rompevirutas

Si la velocidad de corte es la misma, el área de control de virutas difiere dependiendo de si se usa refrigerante o no.


EFECTOS DE LAS CONDICIONES DE CORTE PARA TORNEADO


■EFECTOS DE LAS CONDICIONES DE CORTE


Las condiciones de corte ideales serían: corto tiempo de corte, larga vida útil de la herramienta y buena terminación. Para obtener esas condiciones ideales se precisan condiciones de corte y herramientas adecuadas, así como el conocimiento de la pieza, dureza, forma y capacidad de la máquina.

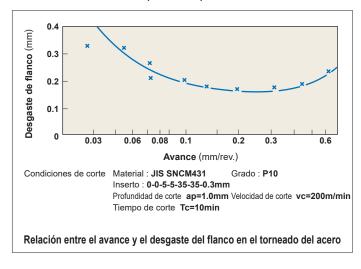
■VELOCIDAD DE CORTE

La velocidad de corte tiene un efecto muy importante en la vida de la herramienta. Aumentándola, se incrementa la temperatura y se acorta la vida útil de la herramienta. La velocidad varía dependiendo de la dureza de la pieza. Seleccione un grado apropiado para cada velocidad de corte.

Efectos de la velocidad de corte

- 1. Aumentando la velocidad de corte un 20%, se reduce la vida útil de la herramienta a la mitad. Aumentándola un 50%, se reduce la vida a 80%.
- 2. El mecanizando a baja velocidad (20-40m/min), tiende a causar vibraciones. Por ello, se acorta la vida útil de la herramienta.

EFECTOS DE LAS CONDICIONES DE CORTE EN TORNEADO

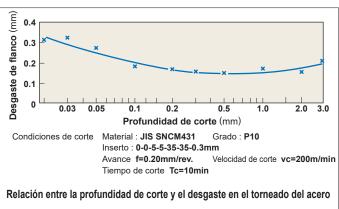

AVANCE

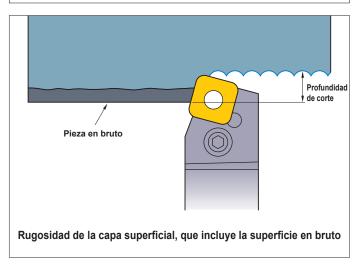
En torneado, el avance es la distancia que la herramienta se mueve por la pieza por revolución.

En fresado, el avance es la distancia recorrida por la mesa por cada revolución de la fresa dividida por el número de dientes. De este modo, se indica como avance por diente. Área de avance relacionada con la aspereza superficial.

Efectos del avance

- La reducción del avance influye en el desgaste del flanco y acorta la vida útil de la herramienta.
- Aumentando el avance, se aumenta la temperatura de corte y el desgaste del flanco. Por ello, la influencia sobre la vida de la herramienta es mínima comparada con la de la velocidad de corte.
- El aumento del avance, mejora la eficiencia del mecanizado.

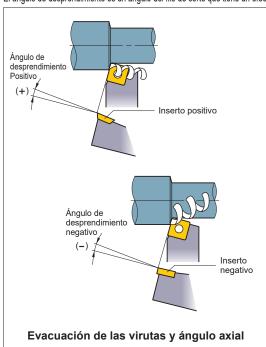


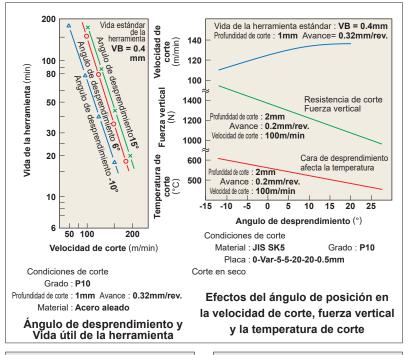

■PROFUNDIDAD DE CORTE

La profundidad de corte se determina en relación a la cantidad de material a mecanizar, la forma de la pieza, la rigidez de la herramienta, la potencia y rigidez de la máquina.

Efectos de la profundidad de corte

- 1. El cambio de la profundidad de corte, no afecta en gran medida a la vida útil de la herramienta.
- Una pequeña profundidad de corte, endurece la capa superficial del material, debido a la fricción entre ellas.
 Por ello, se reduce la vida útil de la herramienta.
- 3. Cuando mecanizamos piezas en bruto de fundición, la profundidad de corte se tiene que aumentar tanto como permita la potencia de la máquina, para prevenir el contacto de las impurezas de la superfice con el inserto e impedir las micro-roturas y el desgaste anormal.





FUNCIÓN DE LAS CARACTERÍSTICAS DE LAS HERRAMIENTAS PARA TORNEADO

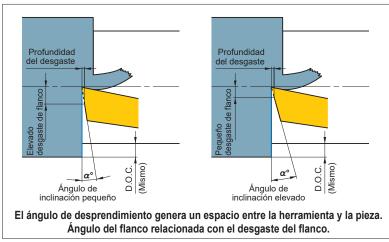
■ÁNGULO DE DESPRENDIMIENTO

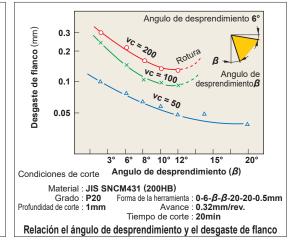
El ángulo de desprendimiento es un ángulo del filo de corte que tiene un efecto importante en la resistencia al corte, la evacuación de las virutas, la temperatura de corte y la vida de la herramienta.

Efectos del ángulo de desprendimiento

- Aumentando el ángulo de desprendimiento en dirección positiva, se mejora la suavidad del corte.
- 2. Aumentando el ángulo de desprendimiento 1º en dirección positiva, decrece el esfuerzo de corte un 1%.
- Aumentando el ángulo de desprendimiento en dirección positiva, se debilita el corte; y en la dirección negativa, se aumenta la resistencia al corte.

Cuándo aumentar el ángulo de desprendimiento en la dirección (-) negativa


- O Pieza endurecida.
- Cuando se requiere un filo robusto para mecanizar piezas en bruto y con corte interrumpido.


Cuándo aumentar el ángulo de desprendimiento en la dirección (+) positiva

- Material blando.
- Material de fácil mecanizado.
- Cuando la pieza y la máquina tienen poca rigidez.

ANGULO DE INCLINACIÓN

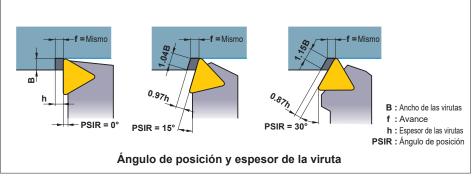
El ángulo de desprendimiento previene la fricción entre la cara de incidencia y la pieza, debido a un pequeño avance.

Efectos del ángulo de inclinación

- 1. El aumento del ángulo de inclinación, reduce el desgaste del flanco.
- El incremento del ángulo de desprendimiento, reduce la robustez del filo de corte.

Cuándo reducir el ángulo de inclinación

- O Piezas endurecidas.
- O Cuando se necesita un filo robusto.


Cuándo aumentar el ángulo de inclinación

- O Materiles blandos.
- O Materiales que se endurecen durante el mecanizado.

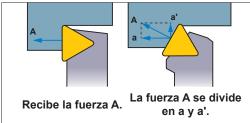
FUNCIÓN DE LAS CARACTERÍSTICAS DE LAS HERRAMIENTAS PARA TORNEADO

■ÁNGULO DE POSICIÓN (ÁNGULO DE ATAQUE)

El filo de corte angular disminuye la carga del impacto y afecta la fuerza del avance, fuerza de carga y el espesor de la viruta.

● EFECTOS DEL ÁNGULO DE POSICIÓN (ÁNGULO DE ATAQUE)

- 1. Con el mismo avance, incrementando el ángulo de posición, incrementamos la longitud de contacto de la viruta y decrece el espesor de ésta. Como resultado, el esfuerzo de corte se dispersa en un filo más largo y se incrementa la vida útil de la herramienta. (Ver diagrama)
- 2. Incrementando el ángulo de ataque, se incrementa la fuerza a'. Por ello, las piezas largas y delgadas, se doblan en muchos casos.
- 3. Incrementando el ángulo de posición, se reduce el control de viruta.
- 4. Incrementando el ángulo de posición, disminuye el espesor de la viruta y aumenta la longitud de la misma. Por lo tanto, la rotura de la viruta es más dificil.


Cuándo reducir el ángulo de ataque

- Temrinación poca profundidad de corte.
- Piezas largas y delgadas. Cuando la máquina tiene poca rigidez.

Cuándo aumentar el ángulo de ataque

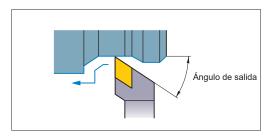
- Piezas endurecidas producidas por una alta temperatura de corte.
- Cuando mecanizamos piezas de diámetros grandes.
- Cuando la máquina tiene poca rigidez.

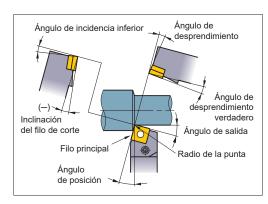
Material: JIS SCM440 80 Grado : P20 Profundidad de corte : **3mm** Avance : **0.2mm/rev**. 60 Corte en seco 40 **Vida de la herramienta** (min) 30 20 10 6 5 3 150 200 Velocidad de corte (m/min) Ángulo de posición y vida de la herramienta

■ÁNGULO DE SALIDA

El ángulo del filo de corte evita interferencias entre la superficie mecanizada y la herramienta. Generalmente 5°-15°.

● EFECTOS DEL ÁNGULO DE SALIDA

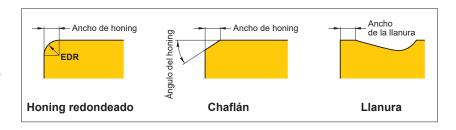

- 1. Reduciendo el ángulo de salida, incrementamos la resistencia del filo; pero, también incrementamos la temperatura de corte.
- 2. Reduciendo el ángulo de salida, la fuerza de retroceso se incrementa y pueden aparecer vibraciones durante el mecanizado.
- 3. Se recomienda un pequeño ángulo de salida en desbaste y un gran ángulo en terminación.

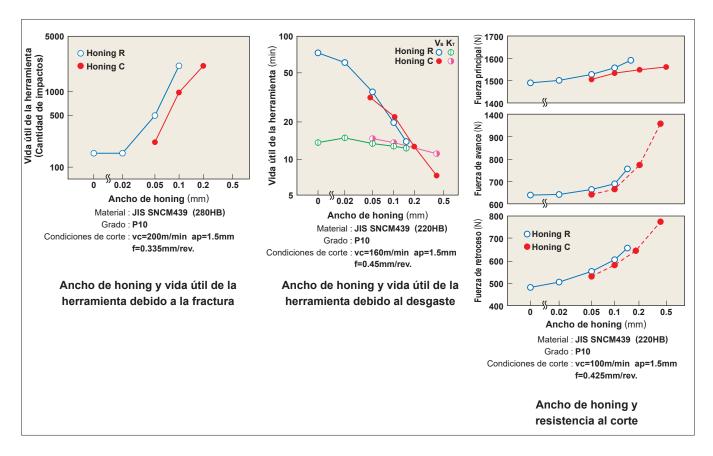

■INCLINACIÓN DEL FILO DE CORTE

La inclinación de la arista de corte es la inclinación de la cara de desprendimiento. En el corte pesado, el filo recibe muchos golpes al comienzo del mecanizado. La inclinación del filo le protege de estos golpes y previene su fractura. Se recomiendan en torneado y en fresado.

● EFECTOS DE LA INCLINACIÓN DEL FILO DE CORTE

- 1. Una inclinación negativa (-) del filo, evacúa virutas en la dirección de la pieza; y positiva (+) las evacúa en la dirección opuesta.
- 2. Una inclinación negativa (-) del filo de corte, incrementa la robustez de éste; pero también incrementa el esfuerzo de corte.


■HONING Y LLANURA


El honing y la llanura son formas del filo de corte y sirven para dar robustez a éste.

El honing puede ser redondeado tipo chaflanado.

El espesor óptimo del honing es aproximadamente 1/2 del avance.

La llanura es la parte plana y estrecha sobre la cara de incidencia o desprendimiento.

Efectos del honing

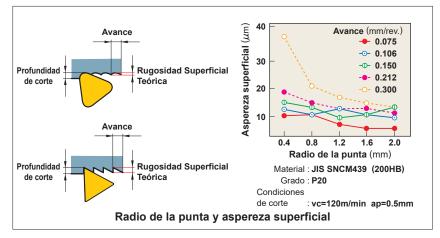
- 1. Aumentar el honing incrementa el esfuerzo de corte, la vida útil de la herramienta y reduce las roturas.
- 2. Aumentando el honing se incrementa el desgaste del flanco y se reduce la vida útil de la herramienta. El tipo de honing no afecta al desgaste en la cara de desprendimiento.
- 3. Aumentar el honing incrementa el esfuerzo de corte y la vibración.

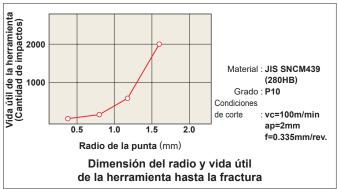
Cuándo reducir el tipo de honing

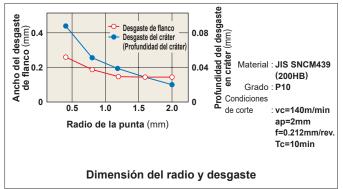
- Al realizar terminación con escasa profundidad de corte y poco avance.
- Materiales blandos.
- Cuando la pieza y la máquina tienen poca rigidez.

Cuándo aumentar el tipo de honing

- O Piezas endurecidas.
- Cuando se requiere un filo robusto para mecanizar piezas y para corte interrumpido.
- Cuando la máquina tiene poca rigidez.


Nota 1) El metal duro, como los recubrimientos de diamante y los insertos de cermet, tienen un honing redondeado estándar.


Q

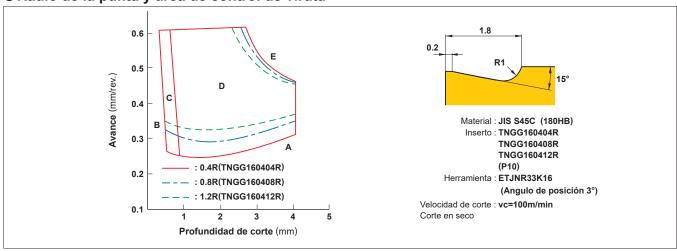

FUNCIÓN DE LAS CARACTERÍSTICAS DE LAS HERRAMIENTAS PARA TORNEADO

■RADIOS

El radio influye en la robustez del filo y en la terminación de la pieza. En general, se recomienda un radio 2–3 veces el avance.

Efectos del radio de punta

- Aumentando el radio de punta, se mejora la aspereza superficial.
- 2. Aumentando el radio de punta, se refuerza el filo.
- Aumentando el radio de punta demasiado, aumenta la resistencia al corte y se generan vibraciones.
- Aumentando el radio de punta, se reduce el desgaste de flanco y de desprendimiento.
- 5. Aumentando el radio de punta demasiado, decrece el control de viruta.


Cuándo reducir el radio de la punta

- Terminación con escasa profundidad de corte.
- Piezas largas y delgadas.
- Cuando la máquina tiene poca rigidez.

Cuándo aumentar el radio de la punta

- Cuando se requiere un filo fuerte por ejemplo en cortes interrumpidos y cortes sin desbaste.
- Cuando mecanizamos una pieza de diámetro grande.
- Cuando la máquina tiene poca rigidez.

Radio de la punta y área de control de viruta

*Consulte en Q008 la "Forma de las Virutas en el Torneado de Acero" para A, B, C, D, E en el gráfico anterior.

FÓRMULAS PARA CALCULAR LA POTENCIA DE CORTE

■FUERZA DE CORTE (Pc)

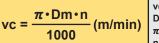
 $Pc = \frac{ap \cdot f \cdot vc \cdot Kc}{60 \times 10^3 \times \eta} \text{ (kW)}$

 Pc (kW)
 : Potencia actual
 ap (mm)
 : Profundidad de corte

 f (mm/rev)
 : Avance por vuelta
 vc (m/min)
 : Velocidad de corte

 Kc (MPa)
 : Fuerza de corte específica
 η : (Coeficiente de máquina)

(Problema) ¿Cuál es la potencia necesaria para mecanizar acero medio (Respuesta) Sustituir la fuerza de corte Kc=3100MPa a una velocidad de 120m/min con una profundidad de 3mm dentro de la fórmula.


y un avance de 0.2mm/rev. (Coeficiente de máquina 80%) ?

 $Pc = \frac{3 \times 0.2 \times 120 \times 3100}{60 \times 10^{3} \times 0.8} = 4.65 \text{(kW)}$

Kc

Material	Resistencia a la tracción		Fuerza d	e corte específica	Kc (MPa)	
iviateriai	(MPa) y dureza	0.1 (mm/rev)	0.2 (mm/rev)	0.3 (mm/rev)	0.4 (mm/rev)	0.6 (mm/rev)
Acero dulce	520	3610	3100	2720	2500	2280
Acero medio	620	3080	2700	2570	2450	2300
Acero duro	720	4050	3600	3250	2950	2640
Acero para herramientas	670	3040	2800	2630	2500	2400
Acero para herramientas	770	3150	2850	2620	2450	2340
Acero al cromo-manganeso	770	3830	3250	2900	2650	2400
Acero al cromo-manganeso	630	4510	3900	3240	2900	2630
Acero al cromo-molibdeno	730	4500	3900	3400	3150	2850
Acero al cromo-molibdeno	600	3610	3200	2880	2700	2500
Acero al cromo-niquel-molibdeno	900	3070	2650	2350	2200	1980
Acero al cromo-niquel-molibdeno	352HB	3310	2900	2580	2400	2200
Fundición dura	46HRC	3190	2800	2600	2450	2270
Fundición meehanita	360	2300	1930	1730	1600	1450
Fundición gris	200HB	2110	1800	1600	1400	1330

■VELOCIDAD DE CORTE (vc)

vc (m/min) : Velocidad de corte
Dm (mm) : Diámetro de la pieza

 π (3.14) : Pi

(min⁻¹) : Revoluciones máximas del eje

★Dividir por 1000 para cambiar m a mm.

(Problema) ¿Cuál es la velocidad de corte cuando la del eje son 700min⁻¹ y el di α metro exterior es Ø50 ?

(Respuesta) Sustituir π = 3.14, Dm = 50, n = 700 in en la fórmula.

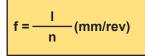
$$vc = \frac{\pi \cdot Dm \cdot n}{1000} = \frac{3.14 \times 50 \times 700}{1000} = 110 \text{m/min}$$

La velocidad de corte son 110m/min.

■TIEMPO DE CORTE (Tc)

(Problema) ¿Cuál es el tiempo de corte cuando mecanizamos una pieza de 100mm a 1000min⁻¹ con un avance de 0.2mm/rev. ?

(Respuesta) Primero, calcule la longitud de corte por minuto, partiendo desde el avance y las revoluciones.


I = f×n = 0.2×1000 = 200mm/min

Sustituir la respuesta de arriba en la fórmula.

$$Tc = \frac{Im}{I} = \frac{100}{200} = 0.5min$$

0.5 x 60=30 (seg.) La respuesta es 30 seg.

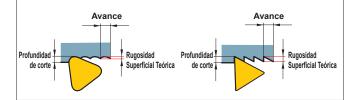
■AVANCE (f)

f (mm/rev.) : Avance por vuelta

I (mm/min): Longitud de corte por min.
n (min⁻¹): Revoluciones
máximas del eie

(Problema) ¿Cuál es el avance por vuelta cuando las revoluciones son 500min⁻¹ y la longitud de corte por minuto son 120mm/min ?

(Respuesta) Sustituir n = 500, I = 120 en la fórmula.


$$f = \frac{1}{n} = \frac{120}{500} = 0.24 \text{mm/rev}$$
La respuesta es 0.24 mm/rev.

■RUGOSIDAD SUPERFICIAL TEÓRICA (h)

 $h = \frac{0.2^2}{8 \times 0.8} \times 1000 = 6.25 \mu m$

La rugosidad teórica es de 6μm.

SOLUCIÓN DE PROBLEMAS EN ROSCADO

Problemas	Observación	Causas	Soluciones						
Baja precisión de	Las roscas no se	Instalación incorrecta de la	Poner el inserto centrado a 0mm.						
rosca.	enlazan entre ellas.	herramienta.	Comprobar la inclinación de la herramienta.						
	Rosca poco profunda.	Incorrecta profundidad de corte.	Modificar la profundidad de corte.						
		Excesivo desgaste del inserto por deformación plástica.	Ver página : "desgaste del flanco muy rápido" y "Gran deformación plastica". Debajo.						
Terminación superficial pobre.	Daños en la superficie.	El exceso de volumen de la viruta impide el trabajo en la pieza.	Cambiar el avance del flanco y el control de la dirección de la viruta.						
			Cambio a inserto clase M con rompevirutas tipo 3-D.						
		El flanco del filo del inserto interfiere con el material.	Comprobar la direción del ángulo y selección apropiada del inserto.						
	Superficie con	Adhesión de material en el filo	Aumento de la velocidad de corte.						
	rayaduras.	de corte.	Aumento de la presión del refrigerante y el volumen.						
		Demasiada resistencia al corte.	Disminución de la profundidad de corte por pasada.						
	Superficie con	Demasiada velocidad de corte.	Disminución de la velocidad de corte.						
	vibraciones.	Insuficiente material o fijación pobre de la herramienta.	Comprobar la pieza a trabajar y la sujeción de la herramienta.						
		Incorrecta instalación de la herramienta.	Poner el inserto centrado a 0mm.						
Corta vida útil de	Se genera un	Demasiada velocidad de corte.	Disminución de la velocidad de corte.						
la herramienta.	desgaste muy rápido.	Velocidad de corte demasiado alta.	Reducir el número de pasadas.						
		Escasa profundidad de corte para terminación.	No mecanizar a 0mm de profundidad de corte, más de 0.05mm es lo recomendable.						
	Desgaste del filo de corte de derecha a izquierda no uniforme.	La dirección del ángulo de la pieza a trabajar y de la herramienta no coinciden.	Comprobar el ángulo de dirección de la pieza a trabajar y la placa de apoyo más apropiada.						
	Rotura y fractura.	Velocidad de corte demasiado alta.	Aumento de la velocidad de corte.						
		Demasiada resistencia al corte.	Aumento del número de pasada y reducción de la resistencia por pasada.						
		Sujeción inestable.	Comprobar la deformación del material.						
			Reducir el voladizo.						
			Comprobar la pieza a trabajar y la sujeción de la herramienta.						
		Viruta compacta.	Incrementar la presión del refrigerante.						
			Cambiar el paso para controlar las virutas para que cada paso permita el desalojo de las mismas.						
			Cambiar al mecanizado interior en retroceso para prevenir el atasco de la viruta.						
		No puede mecanizar las piezas a causa de la alta resistencia al empezar en cada paso.	Hacer chaflán en la entrada y en las caras al salir.						
	Gran deformación plástica.	Alta velocidad de corte y gran generación de calor.	Disminución de la velocidad de corte.						
		Refrigerante inadecuado.	Comprobar que el refrigerante sea suficiente.						
			Aumento de la presión del refrigerante y el volumen.						
		Demasiada resistencia al corte.	Aumento del número de pasada y reducción de la resistencia por pasada.						

Diámetro de broca

HSS Convencional

39.0

40.0

40.5

41.0

42.0

43.0

43.5

44.0

45.0

46.0

46.5

47.0

48.0 48.5

Nominal

M42 ×3.0

M42 ×2.0

M42 ×1.5

M45 ×4.0

M45 ×3.0

M45 ×2.0

M45 ×1.5

M48 ×4.0

M48 ×3.0

M48 ×2.0

M48 ×1.5

M50 ×3.0

M50 ×2.0

M50 ×1.5

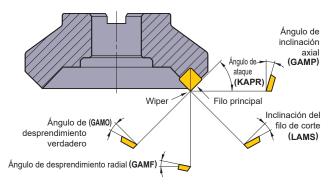
DIÁMETROS DE BROCAS PARA AGUJEROS PILOTOS

Métrica y paso de rosca

Rosca métricaPaso Fino

	Diámetro de broca					
Nominal	HSS	Convencional				
M1 ×0.25	0.75	0.75				
M1.1×0.25	0.85	0.85				
M1.2×0.25	0.95	0.95				
M1.4×0.3	1.10	1.10				
M1.6×0.35	1.25	1.30				
M1.7×0.35	1.35	1.40				
M1.8×0.35	1.45	1.50				
M2 ×0.4	1.60	1.65				
M2.2×0.45	1.75	1.80				
M2.3×0.4	1.90	1.95				
M2.5×0.45	2.10	2.15				
M2.6×0.45	2.15	2.20				
M3 ×0.5	2.50	2.55				
M3.5×0.6	2.90	2.95				
M4 ×0.7	3.3	3.4				
M4.5×0.75	3.8	3.9				
M5 ×0.8	4.2	4.3				
M6 ×1.0	5.0	5.1				
M7 ×1.0	6.0	6.1				
M8 ×1.25	6.8	6.9				
M9 ×1.25	7.8	7.9				
M10 ×1.5	8.5	8.6				
M11 ×1.5	9.5	9.7				
M12 ×1.75	10.3	10.5				
M14 ×2.0	12.0	12.2				
M16 ×2.0	14.0	14.2				
M18 ×2.5	15.5	15.7				
M20 ×2.5	17.5	17.7				
M22 ×2.5	19.5	19.7				
M24 ×3.0	21.0	_				
M27 ×3.0	24.0	_				
M30 ×3.5	26.5	_				
M33 ×3.5	29.5					
M36 ×4.0	32.0	_				
M39 ×4.0	35.0	_				
M42 ×4.5	37.5	_				
M45 ×4.5	40.5	_				
M48 ×5.0	43.0	_				

Paso Fine	<u> </u>				
Nominal	Diámetro	de broca	Nominal	Diámetro	de broca
INOIIIIIIai	HSS	Convencional	Nominal	HSS	Convenciona
M1 ×0.2	0.80	0.80	M20 ×2.0	18.0	18.3
M1.1×0.2	0.90	0.90	M20 ×1.5	18.5	18.7
M1.2×0.2	1.00	1.00	M20 ×1.0	19.0	19.1
M1.4×0.2	1.20	1.20	M22 ×2.0	20.0	_
M1.6×0.2	1.40	1.40	M22 ×1.5	20.5	_
M1.8×0.2	1.60	1.60	M22 ×1.0	21.0	_
M2 ×0.25	1.75	1.75	M24 ×2.0	22.0	_
M2.2×0.25	1.95	2.00	M24 ×1.5	22.5	_
M2.5×0.35	2.20	2.20	M24 ×1.0	23.0	-
M3 ×0.35	2.70	2.70	M25 ×2.0	23.0	-
M3.5×0.35	3.20	3.20	M25 ×1.5	23.5	-
M4 ×0.5	3.50	3.55	M25 ×1.0	24.0	_
M4.5×0.5	4.00	4.05	M26 ×1.5	24.5	_
M5 ×0.5	4.50	4.55	M27 ×2.0	25.0	_
M5.5×0.5	5.00	5.05	M27 ×1.5	25.5	_
M6 ×0.75	5.30	5.35	M27 ×1.0	26.0	_
M7 ×0.75	6.30	6.35	M28 ×2.0	26.0	_
M8 ×1.0	7.00	7.10	M28 ×1.5	26.5	_
M8 ×0.75	7.30	7.35	M28 ×1.0	27.0	_
M9 ×1.0	8.00	8.10	M30 ×3.0	27.0	_
M9 ×0.75	8.30	8.35	M30 ×2.0	28.0	_
M10 ×1.25	8.80	8.90	M30 ×1.5	28.5	_
M10 ×1.0	9.00	9.10	M30 ×1.0	29.0	_
M10 ×0.75	9.30	9.35	M32 ×2.0	30.0	_
M11 ×1.0	10.0	10.1	M32 ×1.5	30.5	_
M11 ×0.75	10.3	10.3	M33 ×3.0	30.0	_
M12 ×1.5	10.5	10.7	M33 ×2.0	31.0	_
M12 ×1.25	10.8	10.9	M33 ×1.5	31.5	_
M12 ×1.0	11.0	11.1	M35 ×1.5	33.5	_
M14 ×1.5	12.5	12.7	M36 ×3.0	33.0	_
M14 ×1.0	13.0	13.1	M36 ×2.0	34.0	_
M15 ×1.5	13.5	13.7	M36 ×1.5	34.5	_
M15 ×1.0	14.0	14.1	M38 ×1.5	36.5	_
M16 ×1.5	14.5	14.7	M39 ×3.0	36.0	_
M16 ×1.0	15.0	15.1	M39 ×2.0	37.0	_
M17 ×1.5	15.5	15.7	M39 ×1.5	37.5	_
M17 ×1.0	16.0	16.1	M40 ×3.0	37.0	_
M18 ×2.0	16.0	16.3	M40 ×2.0	38.0	_
M18 ×1.5	16.5	16.7	M40 ×1.5	38.5	_
M18 ×1.0	17.0	17.1	M42 ×4.0	38.0	_

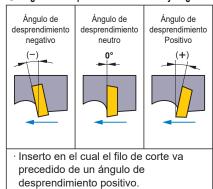

Note 1) Cuando utilice los diámetros de broca de esta tabla, el agujero mecanizado debe ser medido ya que la exactitud de un agujero perforado puede cambiar de acuerdo a las condiciones de perforado, y si sus dimensiones no son las apropiadas, el diámetro de la broca debe ser corregido.

SOLUCIÓN DE PROBLEMAS EN FRESADO PLANEADO

			Se	lecc	ión ado	de	Coi	ndic	ion	es d	le co	orte			Est	ilo y	/ dis	eño	de	_		Máquir de la	na, Insta herram	alación ienta
P	Problema Factores			_	o So	Seleccione un grado con mejor resistencia a la adhesión de material		y Avauce ubir		gn ✓ Ángulo de contacto	No utilice como al saludo de la soluble al s	0	Desprendimiento	aja yugalo de posición	El honing refuerza el filo		Menor Mayor Cantidad de dientes	Mayor salida de virutas	Usar un wiper	Mejora la precisión del "runout"	Rigidez de la fresa	Aumento de la rigidez de sujeción de la herramienta y de la pieza de trabajo	Disminuir el voladizo	Disminución de potencia y fijación posterior
nerramienta	Rápido desgaste del inserto	Calidad de la herramienta inapropiada Geometría del filo de corte inapropiada Velocidad de	•									•	*	*	•					•				
Deterioro de la vida útil de la herramienta	Microroturas o roturas del filo de corte	corte inapropiada Calidad de la herramienta inapropiada Condiciones de corte inapropiadas Pérdida de la robustez del filo Se produce agrietamiento térmico Se produce acumulación en el filo		•	•	•	• * * * * * * * * * * * * * * * * * * *	• * * * * * * * * * * * * * * * * * * *	• 7		•	Refrigerado Seco			*									
eterioro de la terminación superficial De	Terminación superficial pobre	Falta de rigidez Condiciones de corte inapropiadas Se produce soldadura Mala precisión de desviación Vibración	•			•	• 🗡 🔨 •	•	• 4	*	•	Refrigerado	*		• ×		ו		•	•	•	•	•	
Deterioro de la ter	No paralelo o superficie irregular	Pieza de trabajo de curvado Juego de la herramienta Gran fuerza hacia detrás					• ×	• ,	•				* *	K• K•	X • X • X		× • ×				•	•	•	•
ıs en la pieza	Rebabas, Roturas	El espesor de la viruta es demasiado grande El diámetro de corte es demasiado grande Baja nitidez Gran ángulo de la punta					*	•	•	*			<i>7</i>	• 🔨	•	•								
Rebaba, Roturas en la pieza	Micro-roturas en el filo de la pieza	Condiciones de corte inapropiadas Baja nitidez Pequeño ángulo de la punta Vibración					•	• 4	•	~			<i>X</i> • <i>X</i> •	*	• ×		•>				•	•	•	•
Control de virutas	Deficiente evacuación de virutas, obstrucción y enredo de virutas	Se produce soldadura El grosor de viruta es demasiado fino El diámetro de la fresa es demasiado pequeño Deficiente evacuación de virutas					***	₹ •	X		•	Refrigerado			X	•	×	•						

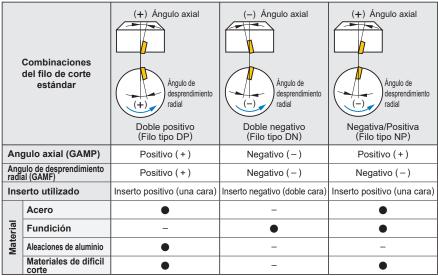
FUNCIÓN DE LAS CARACTERÍSTICAS DE LAS HERRAMIENTAS PARA FRESADO

■FUNCIÓN DE CADA UNO DE LOS ÁNGULOS DEL FILO EN FRESADO



Ángulos	de	corte	en	fresado
---------	----	-------	----	---------

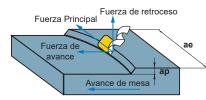
Tipo de ángulo	Símbolo	Función	Efecto
Ángulo axial	GAMP	Determina la dirección de evacuación de la viruta.	Positivo : Excelente maquinabilidad.
Ángulo de desprendimiento radial	GAMF	Determina la agudeza de la herramienta.	Negativo : Excelente evacuación de virutas.
Ángulo de ataque	KAPR	Determina el espesor de la viruta.	Pequeño :Virutas delgadas y pequeño impacto de corte. Gran fuerza de retroceso.
Ángulo de desprendimiento verdadero	sprendimiento GAMO agudeza		Positivo (grande): Excelente maquinabilidad. Mínima adhesión de material. Negativo (grande): Deficiente maquinabilidad. Filo de corte fuerte.
Inclinación del filo	LAMS	Determina la dirección de evacuación de la viruta.	Positivo (grande) : Excelente evacuación de virutas. Baja robustez en la arista de corte.


■INSERTOS ESTÁNDAR

Ángulo de desprendimiento Positivo y Negativo

- Inserto en el cual el filo de corte va
- precedido de un ángulo de desprendimiento negativo.

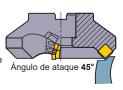
Forma estándar del tipo de corte



■ÁNGULO DE ATAQUE (KAPR) Y CARACTERÍSTICAS DE CORTE

Material : JIS SCM440 (281HB) Herramienta : Ø125mm Un inserto Condiciones de corte : vc=125.6m/min ap=4mm ae=110mm

Comparación de la resistencia al corte entre diferentes formas de insertos

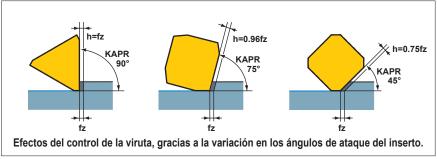


Tres fuerzas de resistencia al corte, en fresado

Ángulo de ataque La fuerza de retroceso está en dirección negativa. Levante la pieza, cuando la sujección de ésta no sea buena. Ángulo de ataque 90° Ángulo de ataque El ángulo principal de 75° se recomienda para planeado de piezas de escasa rigidez o de poco espesor. Ángulo de ataque 75 Ángulo de ataque Gran fuerza de retroceso. Curvado de piezas delgadas y poca

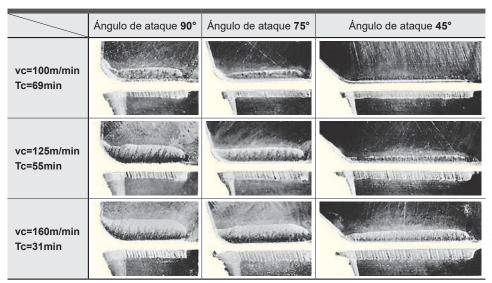
precisión de mecanizado.

*Previene las micro-roturas en el filo en el mecanizado de fundición.


- * Fuerza principal : Fuerza opuesta a la dirección de rotación de la fresa.
- * Fuerza de retroceso : Fuerza que empuja en la dirección axial
- * Fuerza de avance : Fuerza en la dirección del avance producida por el avance de mesa.

FUNCIÓN DE LAS CARACTERÍSTICAS DE LAS HERRAMIENTAS PARA FRESADO

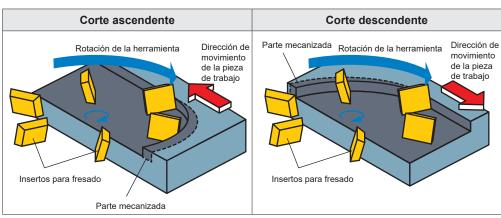
■ÁNGULO DE ATAQUE Y DURABILIDAD


Ángulo de ataque y espesor de la viruta

Cuando la profundidad de corte y el avance por diente, fz, son fijos, el ángulo de esquina es más pequeño (KAPR), entonces se generan virutas más delgadas. (h) se vuelve (para un 45°KAPR, es aproximadamente 75% de ese ángulo de 90°KAPR). Esto puede verse abajo. Por ello, a medida que el ángulo KAPR se incrementa, la resistencia al corte decrece resultando en una mayor vida útil. Sin embargo tenga en cuenta, que si el espesor de la viruta es grande, entonces la resistencia al corte puede incrementarse llevando a vibraciones y una vida útil más corta.

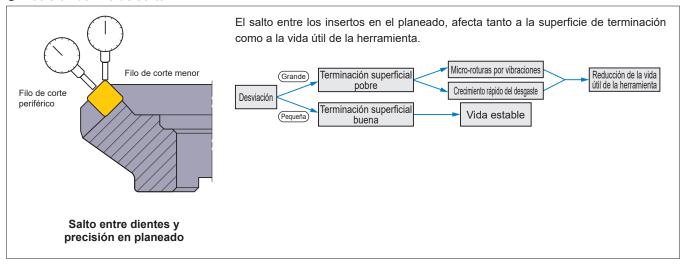
● Ángulo de ataque y desgaste

Abajo puede ver patrones de desgaste para diferentes ángulos principales. Al comparar el desgaste en cráter en los ángulos de 90° y 45°, se puede observar claramente que el desgaste con el ángulo de 90° es superior.

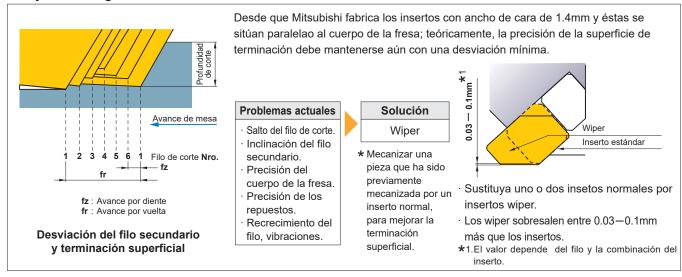


Material: SNCM439 287HB
Herramienta: DC=125mm
Inserto: Metal duro M20
Condiciones de corte: ap=3.0mm
ae=110mm
fz=0.2mm/diente

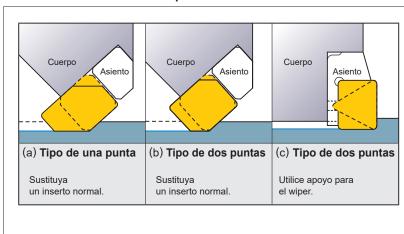
Corte en seco


■ FRESADO DE CORTE ASCENDENTE Y DESCENDENTE

Al elegir un método de mecanizado, el fresado de corte ascendente o descendente viene decidido por las condiciones de la máquina-herramienta, el fresado y la aplicación. Sin embargo, se dice que en términos de duración de la herramienta el fresado de corte descendente es más ventajoso.



■TERMINACIÓN SUPERFICIAL


Precisión del filo de corte

Mejora de la rugosidad

Cómo instalar un inserto Wiper

- · La longitud del sub-filo de corte, tiene que ser mayor que el avance por vuelta.
- Un sub filo demasiado largo provocará astillamiento.
- Cuando el diámetro de la fresa sea grande y el avance por vuelta sea mayor que el filo secundario del wiper, utilice dos o tres de éstos.
- · Cuando utilizamos más de un wiper, tendremos la necesidad de eliminarlos.
- Utilice un grado más duro para mayor resistencia al desgaste en los wipers.

FORMULAS PARA FRESADO PLANEADO

■VELOCIDAD DE CORTE (vc)

π·DC·n (m/min)

*Dividir por 1000 para cambiar m a mm.

vc (m/min): Velocidad de corte π (3.14) : Pi

DC(mm): Diámetro de corte

n (min-1): Revolución máxima del eje

(Problema) ¿Cuál es la velocidad de corte cuando la del eje son 350min-1 y el diámetro de la fresa es ?

(Respuesta) Sustituir π =3.14, DC=125, n=350 en la fórmula.

$$vc = \frac{\pi \cdot DC \cdot n}{1000} = \frac{3.14 \times 125 \times 350}{1000} = 137.4 \text{m/min}$$

La velocidad es 137.4m/min.

■ AVANCE POR DIENTE (fz)

$$fz = \frac{vf}{z \cdot n}$$
 (mm/diente)

fz (mm/diente): Avance por diente

z: Número de insertos

vf (mm/min) : Avance de mesa por minuto

n (min-1) : Revolución máxima del eje (Avance por vuelta fr = z x fz)

(Problema) ¿Cuál es el avance por diente cuando las revoluciones son 500min-1, el número de insertos 10 y el avance de mesa es 500mm/min ? (Respuesta) Sustituir las figuras de arriba en la fórmula.

$$fz = {vf \over z \times n} = {500 \over 10 \times 500} = 0.1 \text{mm/diente}$$

La respuesta es 0.1mm/diente.

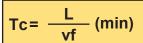
■AVANCE DE MESA (vf)

vf = fz·z·n (mm/min)

vf (mm/min) : Avance de mesa por minuto z : Número de insertos

fz (mm/diente): Avance por diente

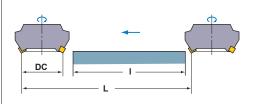
: Revoluciones máximas del eje n (min⁻¹)


(Problema) ¿Cuál es el avance de mesa cuando el avance por diente es 0.1mm/diente, el número de insertos 10 y la velocidad de 500min⁻¹?

(Respuesta) Sustituir las figuras de arriba en la fórmula.

$$vf = fz \times z \times n = 0.1 \times 10 \times 500 = 500 \text{mm/min}$$

El avance de mesa es 500mm/min.


■TIEMPO DE CORTE (Tc)

: Tiempo de corte

vf (mm/min): Avance de mesa por minuto

L (mm) : Longitud total del avance de mesa (Longitud de la pieza: (I)+Diámetro de la fresa : (DC))

(Problema) ¿Cuál es el tiempo necesario de terminación para mecanizar 100mm de ancho y 300mm longitud de superficie de una fundición (JIS FC200) en un bloque, cuando el diámetro de corte es Ø200, el número de insertos es 16, la velocidad de corte es 125m/min, y el avance por diente es 0.25mm. (velocidad de husillo es 200min⁻¹)?

(Respuesta) Calcular el avance de mesa por min. vf=0.25×16×200=800mm/min Calcular la longitud total avance de mesa.L=300+200=500mm Sustituir las respuestas de arriba en la fórmula.

$$Tc = \frac{500}{800} = 0.625 \text{ (min)}$$

0.625×60=37.5 (seg) La resquesta es 37.5 seg.

Q

■FUERZA DE CORTE (Pc)

Pc (kW) : Potencia actual : Profundidad de corte ap (mm) ap·ae·vf·Kc ae (mm) vf (mm/min): Avance de mesa por min. : Ancho de corte 60×106×n Kc (MPa) : Fuerza de corte específica η : (Coeficiente de máquina)

(Problema) ¿Cuál es la potencia requerida para el (Respuesta) Primero, calcule las revoluciones para obtener el avance por diente. fresado en acero para herramientas a una velocidad de 80m/min.?

Cuando la profundidad de corte es 2mm, ancho de corte 80mm y el avance de mesa 280mm/min en una fresa de con 12 insertos.

Coeficiente de máquina 80%.

 $n = \frac{1000vc}{\pi DC} = \frac{1000 \times 80}{3.14 \times 250} = 101.91 min^{-1}$

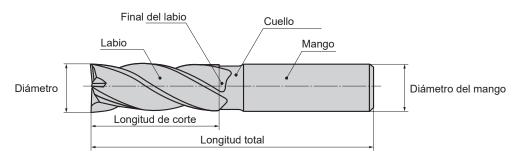
Avance por diente $fz = \frac{vf}{z \times n} = \frac{280}{12 \times 101.9}$ = 0.228mm/diente

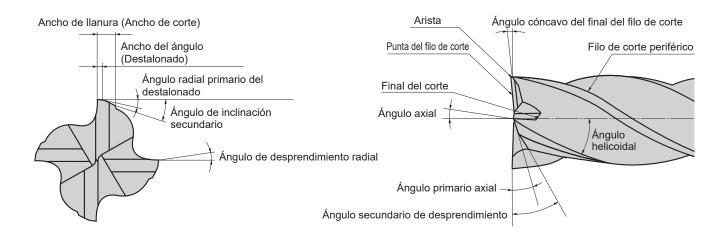
Sustituir la fuerza de corte específica en la fórmula.

$$Pc = \frac{2 \times 80 \times 280 \times 1800}{60 \times 10^6 \times 0.8} = 1.68 \text{ kW}$$

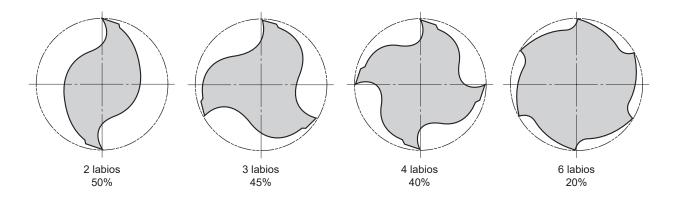
● Ka

Material	Resistencia a la tracción		Fuerza d	e corte específica	Kc (MPa)	
iviateriai	(MPa) y dureza	0.1mm/diente	0.2mm/diente	0.3mm/diente	0.4mm/diente	0.6mm/diente
Acero dulce	520	2200	1950	1820	1700	1580
Acero medio	620	1980	1800	1730	1600	1570
Acero duro	720	2520	2200	2040	1850	1740
Acero para herramientas	670	1980	1800	1730	1700	1600
Acero para herramientas	770	2030	1800	1750	1700	1580
Acero al cromo-manganeso	770	2300	2000	1880	1750	1660
Acero al cromo-manganeso	630	2750	2300	2060	1800	1780
Acero al cromo-molibdeno	730	2540	2250	2140	2000	1800
Acero al cromo-molibdeno	600	2180	2000	1860	1800	1670
Acero al cromo-niquel-molibdeno	940	2000	1800	1680	1600	1500
Acero al cromo-niquel-molibdeno	352HB	2100	1900	1760	1700	1530
Acero inoxidable austenítico	155HB	2030	1970	1900	1770	1710
Fundición	520	2800	2500	2320	2200	2040
Fundición dura	46HRC	3000	2700	2500	2400	2200
Fundición meehanita	360	2180	2000	1750	1600	1470
Fundición gris	200HB	1750	1400	1240	1050	970
Latón	500	1150	950	800	700	630
Aleación ligera (Al-Mg)	160	580	480	400	350	320
Aleación ligera (Al-Si)	200	700	600	490	450	390
Aleación ligera (Al-Zn-Mg-Cu)	570	880	840	840	810	720


DATOS TÉCNIC


ı	s	٠	
Į	ě	١,	
	Ī	١	

		Solución	Selección del grado		Со	nd	icio	nes	de	со	rte		de	Esti e la	lo y her	dis	eñ nier	o ita	Inst	alació	Máq on de	uina, Ia he	rrami	ienta
	Problema Factores			Velocidad de corte	Avance	Profundidad de corte	Avance de punta	Corte descendente	Usar aire a presión	Aumento de la cantidad Bade refrigerante	somo fluido gua soluble		Angulo helicoidal	Cantidad de insertos	Ángulo cóncavo del final del filo de corte		Rigidez de la fresa	Mayor salida de virutas	Reducción del voladizo	Aumentar la precisión de instalación de la herramienta	Aumentar la precisión de desviación del amarre	Revisión de pinzas o cambio	Aumento de la fuerza de fijación del cono	Aumentar la rigidez de sujeción
Pro					ubi Baja		Bajar	Corte des	Usar aire	Aumento de de refrigera	de refrigerante No utilice como fluido de corte agua soluble Determinar corte seco o refrigerado		Subir ∕⁄ Bajar ↘			•	Rigidez d	Mayor sa	Reducció	Aumentai instalació	Aumental desviació	Revisión	Aumento de fijació	Aumental de sujecio
Ita		Se usa fresa sin recubrimiento	•																					
jer	Desgate del	Un número pequeño de filos de corte												3										
Deterioro de la vida útil de la herramienta	filo de corte periférico	Condiciones de corte inapropiadas Se usa un corte de fresado ascendente		•				Corte descendente			•													
de		Condiciones de corte inapropiadas																						
ij.	Formación severa de	Filo de corte frágil															•							
g	rebabas	Fuerza de sujeción insuficiente																				•	•	
a Z		Baja rigidez de sujeción																	•	•	•	•	•	•
de l		Condiciones de corte inapropiadas				•																		
2	Rotura	Baja rigidez de la fresa														3	•							
Deterio	durante el corte	El voladizo es más largo que lo necesário Obstrucción de las virutas				•				•								•	•					
	Vibración durante el	Condiciones de		•	•																			
<u></u>		corte inapropiadas Baja rigidez de la		×	7								3	3		3	•							
superficial	corte	fresa Baja rigidez de sujeción																	•	•	•	•	•	•
dns	Terminación superficial	Desgaste del filo de corte	•																					
ción	de paredes pobre	Condiciones de corte inapropiadas Viruta		•		•				•		•												
ina	- ,	compacta El filo de corte final no										Refrigerado			4									
tern	Terminación superficial pobre	tiene ángulo cóncavo Gran avance			•	Q	•																	
<u>a</u>		Desgaste del filo de corte	•				X																	
o d	Sin	Condiciones de			•	•																		
Deterioro de la terminaci	verticalidad	corte inapropiadas Falta de rigidez de la fresa			×	×							3	3		3	•							
Det	Mala precisión dimensional	Condiciones de corte inapropiadas Baja rigidez de sujeción		•	•	•													•	•	•	•	•	•
etc.	Se producen	Condiciones de corte inapropiadas			•	•																		
turas,	rebabas	Ángulo helicoidal grande				1							•											
Deficiențe evacuación de virutas	Formación	Desgaste en muescas	•																					
Sebab	rápida de rebabas	Condiciones de corte inapropiadas		•	3																			
ente ición itas	Viruta	Eliminación de metal demasiado grande			•	•																		
Deficie syacua de viru	compacta	Ausencia de control de viruta			X	¥								•				•						


TERMINOLOGÍA DE FRESAS

TERMINOLOGÍA PARA FRESAS INTEGRALES

■COMPARACIÓN DE LA FORMA DEL ÁREA DE DESPRENDIMIENTO DE LA VIRUTA

■CARACTERÍSTICAS Y APLICACIONES DE LOS DIFERENTES NÚMEROS DE LABIOS DE LAS FRESAS

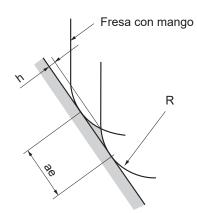
		2 labios	3 labios	4 labios	6 labios		
Características	Ventajas	Excelente desprendimiento de la viruta. Aconsejable para trabajar en plunge. Baja resistencia de corte	Excelente desprendimiento de la viruta. Aconsejable para trabajar en plunge.	Alta rigidez	Alta rigidez Mayor duración del filo de corte		
Caracte	Fallos	Baja rigidez	No es fácil medir el diámetro.	Mal desprendimiento de la viruta.	Mala evacuación de virutas		
	Utilización	Ranurar, Fresado lateral, Plunging. Se utiliza todo el ancho.	Ranurado, Fresado Lateral Corte pesado, Terminación	Ranurado superficial, fresado lateral, Terminación	Para material a mecanizar de gran dureza. Principalmente fresado lateral.		

TIPOS Y FORMAS DE FRESAS

■Filo de corte periférico

Tipo	Figura	Características
Labio normal		Este tipo de labios es utilizado generalmetne para ranurado, fresado lateral y contorneado, etc. Puede ser aplicado en desbaste, semiterminación y terminación.
Labio con conicidad		Los labios cónicos son aplicados para el fresado de moldes y caras con ángulo.
Labio de desbaste		Para el desbaste los labios tienen dientes en forma de ondas para producir virutas pequeñas. La resistencia al corte es baja lo que la hace ideal para este tipo de corte. No es aconsejable para terminación. Estas fresas pueden ser reafiladas.
Labio con forma		Se puede observar la presencia de un radio de esquina. Se pueden producir un rango infinito de geometrías para estas fresas.

■Punta de la fresa


Tipo	Figura	Características
Punta plana (Con agujero en el centro)		Este es utilizada generalmente en ranurado, fresado lateral y contorneado. Se puede reafilar, siempre y cuando se realice con exactitud.
Punta plana (Corte al centro)	中岛帝国	Es aplicada generalmente en ranurado, fresado lateral y contorneado. Se puede realizar mecanizado vertical. Se puede reafilar.
Punta esférica		Ideal para el mecanizado de perfiles y el avance con picoteo.
Con radio de esquina		Para mecanizar esquinas con radio y contornos. Fresado eficiente de esquinas gracias a su gran diámetro y pequeño radio de esquina.

■Partes del mango y cuello

Tipo	Figura	Características
Estándar (Mango recto)		Para uso general.
Mango largo		Para ranurado profundo, tiene un mango largo, posibilitando el ajuste del voladizo.
Cuello largo		Para ranurado profundo y fresas de diámetro pequeño, aplicable también en mandrinado.
Cuello cónico		Para un mejor desempeño en ranurado profundo y mecanizado de moldes.

SELECCIONAR EL VALOR DEL PASO

■AVANCE (CONTORNEADO) FRESA CON MANGO CON RADIO

$$h=R \cdot \left[1-\cos\left\{\sin^{-1}\left(\frac{ae}{2R}\right)\right\}\right]$$

R: Radio de la punta (RE), Ángulo del radio (RE)

ae: Avance de punta

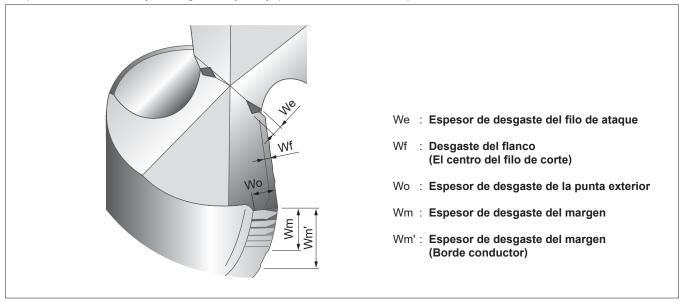
h : Altura de cresta

■ÁNGULO (R) DEL RADIO DE LA FRESA Y ALTURA DE CRESTA POR PASO

	lad		

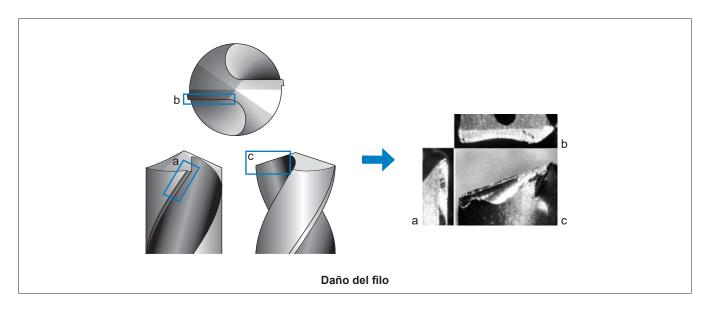
ae					Avance	de punta				
R	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
0.5	0.003	0.010	0.023	0.042	0.067	0.100	_	_	_	_
1	0.001	0.005	0.011	0.020	0.032	0.046	0.063	0.083	0.107	_
1.5	0.001	0.003	0.008	0.013	0.021	0.030	0.041	0.054	0.069	0.086
2	0.001	0.003	0.006	0.010	0.016	0.023	0.031	0.040	0.051	0.064
2.5	0.001	0.002	0.005	0.008	0.013	0.018	0.025	0.032	0.041	0.051
3		0.002	0.004	0.007	0.010	0.015	0.020	0.027	0.034	0.042
4		0.001	0.003	0.005	0.008	0.011	0.015	0.020	0.025	0.031
5		0.001	0.002	0.004	0.006	0.009	0.012	0.016	0.020	0.025
6		0.001	0.002	0.003	0.005	0.008	0.010	0.013	0.017	0.021
8			0.001	0.003	0.004	0.006	0.008	0.010	0.013	0.016
10			0.001	0.002	0.003	0.005	0.006	0.008	0.010	0.013
12.5			0.001	0.002	0.003	0.004	0.005	0.006	0.008	0.010

ae					A					
					Avance	de punta				
R	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
0.5	_	_	_	_	_	_	_	_	_	_
1	_	_	_	_	_	_	_	_	_	_
1.5	0.104	_	_	_	_	_	_	_	_	_
2	0.077	0.092	0.109	_	_	_	_	_	_	_
2.5	0.061	0.073	0.086	0.100	_	_	_	_	_	_
3	0.051	0.061	0.071	0.083	0.095	0.109	_	_	_	_
4	0.038	0.045	0.053	0.062	0.071	0.081	0.091	0.103	_	_
5	0.030	0.036	0.042	0.049	0.057	0.064	0.073	0.082	0.091	0.101
6	0.025	0.030	0.035	0.041	0.047	0.054	0.061	0.068	0.076	0.084
8	0.019	0.023	0.026	0.031	0.035	0.040	0.045	0.051	0.057	0.063
10	0.015	0.018	0.021	0.025	0.028	0.032	0.036	0.041	0.045	0.050
12.5	0.012	0.014	0.017	0.020	0.023	0.026	0.029	0.032	0.036	0.040

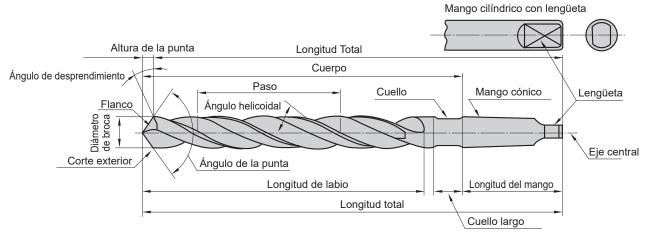

SOLUCIÓN DE PROBLEMAS EN PERFORADO

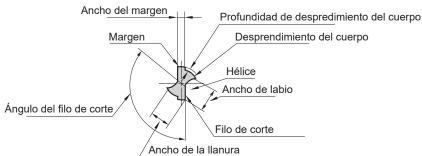
	0.1			C	onc	licio	nes	de	cort	:e			E: de	stilo la h	y d erra	iser mie	io nta		Máquina, Instalación de la herramienta				
	Sol	ución	Velocidad de corte	o o	inicio	atravesar		del agujero dad		igera		Ancho de bisel	Ancho de honing	Espesor del núcleo	Acortar la longitud de los labios	del labio	n Br	Cambiar a una broca con adelgazamiento X en la punta	Aumentar la precisión de instalación de la herramienta	adizo	eza	2	Reducir retroceso de mecanizado y aumentar rigidez
			Velocic	Avance	vance al	vance al		precisión profundi	porcentaj ante	el volume	e la presió ante				ongitud d	la altura	broca col	una bro	la precis n de la he	n del vola	a de la pi	la rigide	troceso c lo y aume
Pro	Problema Factores			ir⊿ ar 🔻	Reducir avance al inicio del corte	Reducir avance al atravesar la pieza	Paso	Aumentar precisión del previo y la profundidad	Aumentar porcentaje de refrigerante	Aumento del volumen	Aumento de la presión del refrigerante		ubir ajar		Acortar la l	Disminuir la altura del labio	Usar una broca con refrigeración interna	Cambiar a una broca adelgazamiento X en	Aumentar instalació	Reducción del voladizo	Cara plana de la pieza	Aumentar la rigidez de sujeción	Reducir re mecanizac
nta	Rotura de	Falta de rigidez de la broca Condiciones de corte inapropiadas		•										*	•								
Deterioro de la vida útil de la herramienta	la broca	Gran desviación del soporte de la herramienta La cara de la pieza de		X															•		•		•
e la he	Gran desgaste	trabajo está inclinada Condiciones de corte inapropiadas Aumento de la	•																				
a útil d	del filo de corte periférico	temperatura en el punto de corte Mala precisión de desviación							•	•							•		•				
la vida	Microroturas del filo de corte	Condiciones de corte inapropiadas Gran desviación del soporte de la herramienta		•			•												•				•
oro de	periférico	Castañeo, vibración El filo de ataque es											•							•		•	•
Deteri	Microroturas del filo de ataque	demasiado ancho Mala entrada			•							~											
	·	Castañeo, vibración											•							•		•	•
ero	Aumenta el diámetro del agujero	Falta de rigidez de la broca Geometría de la broca inapropiada												6	•	•							
del agujero	Disminuye el diámetro del	Aumento de la temperatura en el punto de corte Condiciones de	•						•	•							•						
	agujero	corte inapropiadas Geometría de la broca inapropiada Falta de rigidez	×											7		•							
Deterioro de la precisión	Mal enderezamiento	de la broca Gran desviación del soporte de la herramienta												•	•				•				•
le la		Malas propiedades de la guía						•															
rioro c	Mala precisión de posicionamiento	Falta de rigidez de la broca Mala entrada												•	•			•					
Dete	del agujero, redondez y aspereza superficial	Condiciones de corte inapropiadas Gran desviación del			•														•				
pabas	Rebabas en la salida del	soporte de la herramienta Geometría de la broca inapropiada Condiciones de											•										
e Re	agujero	corte inapropiadas Condiciones de		A		•																	
n deficient rutas	Virutas Largas	corte inapropiadas Evacuación deficiente de virutas		*				•		•	•			•			•						
Evacuación deficiente Rebabas de virutas	Obstrucción de las virutas	Condiciones de corte inapropiadas Evacuación deficiente de virutas	•	•				•		•	•			•			•						

DESGASTE DE LA BROCA Y DAÑOS DEL FILO DE CORTE


■ CONDICIÓN DE DESGASTE DE LA BROCA

La tabla de abajo muestra un dibujo sencillo que describe el desgaste de un filo de la broca. La generación y la cantidad de desgaste varían según los materiales de la pieza de trabajo y el estado de los cortes. Pero en general, el desgaste periférico es mayor y determina la vida útil de la herramienta. Al volver a rectificar, el flanco se desgasta en el punto que tiene que ser rectificado por completo. Por lo tanto, si hay un desgaste mayor hay que eliminar más material para renovar el filo de corte.


DAÑO EN EL FILO


Al perforar, el filo de la broca puede sufrir astillamiento, roturas y daños anormales. En tales casos, es importante mirar con detalle los daños, investigar la causa y tomar contramedidas.

TERMINOLOGÍA DE BROCAS Y CARACTERÍSTICAS DE CORTE

■PARTES DE LA BROCA

■ESPECIFICACIONES DE LA FIGURA Y CARACTERÍSTICAS DE CORTE

Ángulo helicoidal	Es la inclinación del labio respecto a la dirección axial de una broca; lo que corresponde al ángulo de desprendimiento de un inserto. El ángulo de desprendimento de una broca, varía de acuerdo con la posición del filo de corte, y disminuye en cuanto la circunferencia se aproxima al centro. El filo del cincel tiene un rango negativo de ángulo. Material de gran dureza Pequeña . Ángulo de desprendimiento . Grande Material blando (Aluminio, etc.)
Longitud de labio	Está determinada por la profundidad del agujero, longitud del casquillo y limite del reafilado. Ya que tiene una gran influencia en la vida útil de la broca; es necesario minimizarla tanto como sea posible.
	En general, el ángulo es de 118°, pero varía según las aplicaciones.
Ángulo de la punta	Material blando, con buena maquinabilidad. Pequeña . Ángulo de la punta Frande Para material duro y mecanizado de alta eficiencia
Espesor de red	Es un elemento importante, que determina la rigidez y la formación de las virutas en la broca. El espesor de la red se ajusta de acuerdo con la aplicación. Baja resistencia al corte Baja rigidez Buena formación de viruta Material con buena maquinabilidad Delgado Espesor de la red Gran resistencia al corte Alta rigidez Mala formación de viruta Material de gran dureza, perforado de agujeros cruzados, etc.
Margen	La punta determina el diámetro de la broca y tiene la función de guía durante el perforado. El ancho del margen determina el rozamiento en el perforado de un agujero. Mala guía Pequeña Ancho de margen Grande Buena guía
Conicidad del diámetro	Para reducir la fricción con el interior del agujero, la parte desde la punta al mango es ligeramente cónica. El ángulo generalmente se representa por la cantidad de reducción del diámetro con respecto a la longitud del labio, que es aproximadamente de 0.04—0.1mm. Se fija a un valor superior para brocas de alta eficiencia.

■GEOMETRÍA DEL FILO Y SU INFLUENCIA

Tal como se muestra en la tabla de abajo, es posible seleccionar la geometría del filo más adecuada para las diferentes aplicaciones. Si se selecciona la geometría de filo de corte más adecuada puede obtenerse la mayor eficacia de mecanizado y la mayor precisión de agujero.

● Formas de los filos de corte

Nombre del afilado	Figura	Características y efecto	Aplicación
Cónica		El flanco es cónico y el ángulo de desprendimento, aumenta hacia el centro de la broca.	Uso general
Plana		El flanco es liso. Afilado rápido.	Principalmente para brocas de diámetro pequeño
Tres ángulos de graduación		 Al no haber filo de corte, los resultados son una fuerza centrípeta muy elevada y un agujero con sobretamaño Requiere una afiladora especial. Afilado superficial de tres lados. 	Para operaciones de perforado que requieren alta precisión del agujero y precisión de posicionamiento.
Punto de la hélice		 Para aumentar el ángulo de ataque cerca del centro de la broca, se recomienda un afilado cónico combinado con un labio irregular. Borde de corte tipo S con gran fuerza centripeta y precisión de mecanizado. 	Para perforado de alta precisión.
Labio radial		 El borde de corte está afilado centrípetamente para dispersar la carga. Gran precisión de mecanizado y aspereza superficial. Para agujeros pasantes, rebabas pequeñas en la base. Requiere una afiladora especial. 	Fundición, Aleaciones de aluminio Para placas de fundición. Acero
Broca de punto central		Esta geometría tiene ángulo de punto de dos etapas para mejor concentricidad y una reducción del choque al sacar la pieza de trabajo.	Para perforado de chapas delgadas.

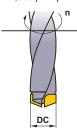
■ESPESOR DEL NÚCLEO

El rango del ángulo del filo de corte de una broca se reduce en el centro y este pasa a ser un ángulo negativo en el filo del cincel. Durante el perforado, el centro de la broca realiza el trabajo, generando una resistencia del 50–70%. El adelgazamiento del núcleo es muy efectivo para la reducción de la resistencia de corte de una broca, la remoción rápida de las virutas en el filo del cincel y un mejor centrado inicial.

Figura	TIPO X	TIPO XR	TIPO S	TIPO N
Características	La carga de empuje se reduce sustancialmente, y	El mecanizado es un poco peor que con el tipo X, pero el filo de corte está más reforzado y se puede aplicar en un mayor tipo de operaciones.	Diseño mas popular, fácil forma de filo.	Es efectivo cuando el núcleo es comparativamente ancho.
Aplicaciones principales	Perforado en general y de agujeros profundos.	Mayor vida útil. Perforado en general y acero inoxidable.	Perforado en general, en acero, fundición y metales no ferrosos.	Perforado profundo.

TERMINOLOGÍA DE BROCAS Y CARACTERÍSTICAS DE CORTE

■VIRUTAS DE PERFORADO


Tipos de virutas	Figura	Característias y fácil clasificación
Espiral cónica		Las virutas con forma helicoidal hechas con el filo de corte se curvean en los labios. Las virutas de este tipo son producidas cuando el avance de materiales nodulares es pequeño. Si la viruta se rompe después de giros bruscos, el desempeño de control de viruta es satisfactorio.
Paso largo	There was the same of the same	La viruta generada sale sin formar bucles. Puede enroscarse fácilmente alrededor de la broca.
Abanico		Esta es una viruta rota por el alojamiento causado en el labio de la broca y la pared de un agujero hecho. Esto es generado cuando el avance es alto.
Segmento		Una viruta con forma de espiral cónico que se rompe antes que la viruta se convierta en forma de picos largos por la resistencia causada por la pared del agujero de la broca debido a la insuficiencia de ductivilidad. Excelente descarga y desalojamiento de rebaba.
Zig-zag		Una viruta que es enrollada y doblada debido a la forma del labio y las características del material. Esto fácilmente causa atascamiento de virutas en los labios.
En aguja		Las virutas rotas por la vibración o rotas cuando los materiales frágiles se curvan con un radio pequeño. El desempeño de corte es satisfactorio, pero estas virutas se pueden ir acumulando y crear atascamientos.

FÓRMULAS PARA PERFORADO

■VELOCIDAD DE CORTE (vc)

 $vc = \frac{\pi \cdot DC \cdot n}{1000} \text{ (m/min)}$

*Dividir por 1,000 para pasar de m a mm.

(Problema) ¿Cuál es la velocidad de corte cuando la velocidad del eje principal es 1350min⁻¹ y el diámetro de la broca es 12mm ?

(Respuesta) Sustituir π =3.14, DC=12, n=1350 en la fórmula.

$$vc = \frac{\pi \cdot DC \cdot n}{1000} = \frac{3.14 \times 12 \times 1350}{1000} = 50.9 \text{m/min}$$

La velocidad es 50.9m/min.

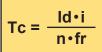
■AVANCE DEL EJE PRINCIPAL (vf)

vf = fr • n (mm/min)

vf (mm/min): Velocidad de avance del eje principal (eje Z)

fr (mm/rev): Avance por vuelta

n (min⁻¹) : Velocidad del husillo principal

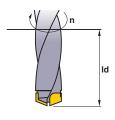

(Problema) ¿Cuál es el avance del eje (vf) cuando el avance por revolución es 0.2mm/rev. y la velocidad del eje principal es 1350min⁻¹ ?

(Respuesta) Sustituir fr=0.2, n=1350 en la fórmula.

 $vf = fr \times n = 0.2 \times 1350 = 270 mm/min$

El avance del eje es 270mm/min.

■TIEMPO DE PERFORADO (Tc)



Tc (min) : Tiempo de perforado
n (min-1) : Velocidad del husillo
ld (mm) : Profundidad del agujero
fr (mm/rev): Avance por vuelta
i : Cantidad de agujeros

(Problema) ¿Cuál es el tiempo necesario para perforar un agujero de 30mm de longitud en acero aleado con una velocidad de corte de 50m/min y avance de 0.15mm/rev. ?

(Respuesta) Velocidad del husillo $n = \frac{50 \times 1000}{15 \times 3.14} = 1061.57 \text{min}^{-1}$

$$Tc = \frac{30 \times 1}{1061.57 \times 0.15} = 0.188$$
$$= 0.188 \times 60 = 11.3 \text{ sec}$$

LISTA DE REFERENCIA CRUZADA DE MATERIALES METÁLICOS

■ ACERO AL CARBONO

Japón	Alen	nania	Reino	Unido	Francia	Italia	España	Suecia	E.E.U.U.	China
JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB
STKM 12A STKM 12C	1.0038	RSt.37-2	4360 40 C	_	E 24-2 Ne	_	_	1311	A570.36	15
_	1.0401	C15	080M15	_	CC12	C15, C16	F.111	1350	1015	15
_	1.0402	C22	050A20	2C	CC20	C20, C21	F.112	1450	1020	20
SUM22	1.0715	9SMn28	230M07	1A	S250	CF9SMn28	F.2111 11SMn28	1912	1213	Y15
SUM22L	1.0718	9SMnPb28	_	_	S250Pb	CF9SMnPb28	11SMnPb28	1914	12L13	_
_	1.0722	10SPb20	_	_	10PbF2	CF10Pb20	10SPb20	_	_	-
_	1.0736	9SMn36	240M07	1B	S300	CF9SMn36	12SMn35	_	1215	Y13
_	1.0737	9SMnPb36	_	_	S300Pb	CF9SMnPb36	12SMnP35	1926	12L14	-
S15C	1.1141	Ck15	080M15	32C	XC12	C16	C15K	1370	1015	15
S25C	1.1158	Ck25	_	_	-	-	-	_	1025	25
_	1.8900	StE380	4360 55 E	_	_	FeE390KG	_	2145	A572-60	_
_	1.0501	C35	060A35	_	CC35	C35	F.113	1550	1035	35
_	1.0503	C45	080M46	_	CC45	C45	F.114	1650	1045	45
_	1.0726	35S20	212M36	8M	35MF4	_	F210G	1957	1140	_
_	1.1157	40Mn4	150M36	15	35M5	_	_	_	1039	40Mn
SMn438(H)	1.1167	36Mn5	_	_	40M5	_	36Mn5	2120	1335	35Mn2
SCMn1	1.1170	28Mn6	150M28	14A	20M5	C28Mn	_	_	1330	30Mn
S35C	1.1183	Cf35	060A35	_	XC38TS	C36	_	1572	1035	35Mn
S45C	1.1191	Ck45	080M46	_	XC42	C45	C45K	1672	1045	Ck45
S50C	1.1213	C50	060A52	_	XC48TS	C53	_	1674	1050	50
_	1.0535	C55	070M55	9	_	C55	_	1655	1055	55
_	1.0601	C60	080A62	43D	CC55	C60	_	_	1060	60
S55C	1.1203	Ck55	070M55	_	XC55	C50	C55K	_	1055	55
S58C	1.1221	Ck60	080A62	43D	XC60	C60	_	1678	1060	60Mn
_	1.1274	Ck101	060A96	_	XC100	_	F.5117	1870	1095	_
SK3	1.1545	C105W1	BW1A	_	Y105	C36KU	F.5118	1880	W1	_
SUP4	1.1545	C105W1	BW2	_	Y120	C120KU	F.515	2900	W210	_

■ ACERO ALEADO

Japón	Aler	mania	Reino	Unido	Francia	Italia	España	Suecia	E.E.U.U.	China
JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB
SM400A, SM400B SM400C	1.0144	St.44.2	4360 43 C	_	E28-3	_	_	1412	A573-81	_
SM490A, SM490B SM490C	1.0570	St52-3	4360 50 B	_	E36-3	Fe52BFN Fe52CFN	_	2132	_	_
_	1.0841	St52-3	150M19	_	20MC5	Fe52	F.431	2172	5120	_
_	1.0904	55Si7	250A53	45	55S7	55Si8	56Si7	2085	9255	55Si2Mn
_	1.0961	60SiCr7	_	_	60SC7	60SiCr8	60SiCr8	_	9262	_
SUJ2	1.3505	100Cr6	534A99	31	100C6	100Cr6	F.131	2258	ASTM 52100	GCr15
_	1.5415	15Mo3	1501-240	_	15D3	16Mo3KW	16Mo3	2912	ASTM A204Gr.A	-
_	1.5423	16Mo5	1503-245-420	_	_	16Mo5	16Mo5	_	4520	_
_	1.5622	14Ni6	-	_	16N6	14Ni6	15Ni6	_	ASTM A350LF5	-
_	1.5662	X8Ni9	1501-509-510	_	_	X10Ni9	XBNi09	_	ASTM A353	_
SNC236	1.5710	36NiCr6	640A35	111A	35NC6	_	_	_	3135	_
SNC415(H)	1.5732	14NiCr10	_	_	14NC11	16NiCr11	15NiCr11	_	3415	_
SNC815(H)	1.5752	14NiCr14	655M13	36A	12NC15	_	_	_	3415, 3310	_
SNCM220(H)	1.6523	21NiCrMo2	805M20	362	20NCD2	20NiCrMo2	20NiCrMo2	2506	8620	_
SNCM240	1.6546	40NiCrMo22	311-Type 7	_	-	40NiCrMo2(KB)	40NiCrMo2	_	8740	-
-	1.6587	17CrNiMo6	820A16	_	18NCD6	_	14NiCrMo13	_	-	_
SCr415(H)	1.7015	15Cr3	523M15	_	12C3	_	_	_	5015	15Cr

Japón JIS		nania	1101110	Unido	Francia	Italia	España	Suecia	E.E.U.U.	China
	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB
SCr440 1	1.7045	42Cr4	_	_	_	_	42Cr4	2245	5140	40Cr
		55Cr3	527A60	48	55C3	_	_	_		20CrMn
SCM415(H) 1		15CrMo5	_	_	12CD4	_	12CrMo4	2216	_	_
	1.7335		1501-620Gr27	_	15CD3.5	14CrMo45	14CrMo45	_	ASTM A182	
					15CD4.5				F11, F12	_
	4 7000	100.11.010	1501-622		12CD9	12CrMo9	T	0040	ASTM A182	
_ 1	1.7380	10CrMo910	Gr31, 45	_	12CD10	12CrMo10	TU.H	2218	F.22	_
	1.7715	14MoV63	1503-660-440	_	_	_	13MoCrV6	_	_	_
	1.8523	39CrMoV13 9	897M39	40C	_	36CrMoV12	_	_	_	_
_ 1	1.6511	36CrNiMo4	816M40	110	40NCD3	38NiCrMo4(KB)	35NiCrMo4	_	9840	_
	1.6582	34CrNiMo6	817M40	24	35NCD6	35NiCrMo6(KB)	_	2541	4340	40CrNiMoA
SCr430(H) 1	1.7033	34Cr4	530A32	18B	32C4	34Cr4(KB)	35Cr4	_	5132	35Cr
SCr440(H) 1	1.7035	41Cr4	530M40	18	42C4	41Cr4	42Cr4	_	5140	40Cr
_ 1	1.7131	16MnCr5	(527M20)	_	16MC5	16MnCr5	16MnCr5	2511	5115	18CrMn
SCM420 1	1.7218	25CrMo4	1717CDS110	_	25CD4	25CrMo4(KB)	55Cr3	2225	4130	200rMn
SCM430			708M20				55013			30CrMn
SCM432 SCCRM3	1.7220	34CrMo4	708A37	19B	35CD4	35CrMo4	34CrMo4	2234	4137 4135	35CrMo
	1.7223	41CrMo4	708M40	19A	42CD4TS	41CrMo4	42CrMo4	2244	4140	40CrMoA
SCM440(H) 1	1.7225	42CrMo4	708M40	19A	42CD4	42CrMo4	42CrMo4	2244	4140	42CrMo 42CrMnMo
_ /	1.7361	32CrMo12	722M24	40B	30CD12	32CrMo12	F.124.A	2240	_	_
SUP10 1	1.8159	50CrV4		47	50CV4	50CrV4	51CrV4	2230	6150	50CrVA
	1.8509	41CrAlMo7		41B	40CAD6 40CAD2		41CrAlMo7	2940	_	_
_ 1	1.2067	100Cr6	BL3	_	Y100C6	_	100Cr6	_	L3	CrV, 9SiCr
SKS31 1 SKS2, SKS3	1.2419	105WCr6	_	_	105WC13	100WCr6 107WCr5KU	105WCr5	2140	_	CrWMo
	1.2713	55NiCrMoV6	BH224/5	_	55NCDV7	_	F.520.S	_	L6	5CrNiMo
	1.5662	X8Ni9	1501-509	_	_	X10Ni9	XBNi09	_	ASTM A353	
	1.5680	12Ni19	_	_	Z18N5	_	_	_	2515	_
	1.6657	14NiCrMo134	832M13	36C	_	15NiCrMo13	14NiCrMo131	_	_	_
SKD1 1	1.2080	X210Cr12	BD3	_	Z200C12	X210Cr13KU	X210Cr12	_	D3	0.40
						X250Cr12KU			ASTM D3	Cr12
SKD11 1	1.2601	X153CrMoV12	BD2	_	_	X160CrMoV12	-	_	D2	Cr12MoV
SKD12 1	1.2363	X100CrMoV5	BA2	_	Z100CDV5	X100CrMoV5	F.5227	2260	A2	Cr5Mo1V
SKD61 1	1.2344	X40CrMoV51	BH13	_	Z40CDV5	X35CrMoV05KU	X40CrMoV5	2242	H13	4Cr5MoSiV1
		X40CrMoV51				X40CrMoV51KU			ASTM H13	401310103171
SKD2	1.2436	X210CrW12	-	_	_	X215CrW121KU	X210CrW12	2312	_	_
_ ^	1.2542	45WCrV7	BS1	_	_	45WCrV8KU	45WCrSi8	2710	S1	_
SKD5	1.2581	X30WCrV93	BH21	_	Z30WCV9	X28W09KU	X30WCrV9	_	H21	30WCrV9
	1.2601	X165CrMoV12	_	_	_	X165CrMoW12KU	X160CrMoV12	2310	_	
SKS43	1.2833	100V1	BW2	_	Y1105V	_	_	_	W210	V
SKH3	1.3255	S 18-1-2-5	BT4	_	Z80WKCV	X78WCo1805KU	HS18-1-1-5	_	T4	W18Cr4VCo5
SKH2	1.3355	S 18-0-1	BT1	_	Z80WCV	X75W18KU	HS18-0-1	-	T1	_
	1.3401	G-X120Mn12	Z120M12	_	Z120M12		X120MN12	_	_	
	1.4718	X45CrSi93	401S45	52	Z45CS9	X45CrSi8	F.322	-		X45CrSi93
SUH3	1.3343	S6-5-2	4959BA2	_		15NiCrMo13	-	2715	D3	
SKH9, SKH51		S6/5/2	BM2	-	Z85WDCV	HS6-5-2-2	F.5603	2722	M2	_
	1.3348	S 2-9-2	_	_	_	HS2-9-2	HS2-9-2	2782	M7	
SKH55	1.3243	S6/5/2/5	BM35	-	6-5-2-5	HS6-5-2-5	F.5613	2723	M35	_

Q

LISTA DE REFERENCIA CRUZADA DE MATERIALES METÁLICOS

■ACERO INOXIDABLE (FERRÍTICO, MARTENSÍTICO)

Japón	Alen	nania	Reino Unido		Francia	Italia	España	Suecia	E.E.U.U.	China
JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB
SUS403	1.4000	X7Cr13	403S17	_	Z6C13	X6Cr13	F.3110	2301	403	OCr13 1Cr12
_	1.4001	X7Cr14	_	_	_	_	F.8401	_	-	_
SUS416	1.4005	X12CrS13	416S21	_	Z11CF13	X12CrS13	F.3411	2380	416	_
SUS410	1.4006	X10Cr13	410S21	56A	Z10C14	X12Cr13	F.3401	2302	410	1Cr13
SUS430	1.4016	X8Cr17	430S15	60	Z8C17	X8Cr17	F.3113	2320	430	1Cr17
SCS2	1.4027	G-X20Cr14	420C29	56B	Z20C13M	_	_	_	_	_
SUS420J2	1.4034	X46Cr13	420S45	56D	Z40CM Z38C13M	X40Cr14	F.3405	2304	_	4Cr13
_	1.4003	-	405S17	_	Z8CA12	X6CrAl13	_	-	405	_
_	1.4021	_	420S37	_	Z8CA12	X20Cr13	_	2303	420	_
SUS431	1.4057	X22CrNi17	431S29	57	Z15CNi6.02	X16CrNi16	F.3427	2321	431	1Cr17Ni2
SUS430F	1.4104	X12CrMoS17	_	_	Z10CF17	X10CrS17	F.3117	2383	430F	Y1Cr17
SUS434	1.4113	X6CrMo17	434S17	_	Z8CD17.01	X8CrMo17	_	2325	434	1Cr17Mo
SCS5	1.4313	X5CrNi134	425C11	_	Z4CND13.4M	(G)X6CrNi304	_	2385	CA6-NM	_
SUS405	1.4724	X10CrA113	403S17	_	Z10C13	X10CrA112	F.311	_	405	OCr13Al
SUS430	1.4742	X10CrA118	430S15	60	Z10CAS18	X8Cr17	F.3113	_	430	Cr17
SUH4	1.4747	X80CrNiSi20	443S65	59	Z80CSN20.02	X80CrSiNi20	F.320B	-	HNV6	_
SUH446	1.4762	X10CrA124	_	_	Z10CAS24	X16Cr26	-	2322	446	2Cr25N
SUH35	1.4871	X53CrMnNiN219	349S54	_	Z52CMN21.09	X53CrMnNiN219	_	-	EV8	5Cr2Mn9Ni4N
_	1.4521	X1CrMoTi182	_	_	-	_	-	2326	S44400	_
_	1.4922	X20CrMoV12-1	_	_	_	X20CrMoNi1201	_	2317	-	_
_	1.4542	_	_	_	Z7CNU17-04	_	_	_	630	_

■ ACERO INOXIDABLE (AUSTENÍTICO)

Japón	Aler	mania	Rein	o Unido	Francia	Italia	España	Suecia	E.E.U.U.	China
JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB
SUS304L	1.4306	X2CrNi1911	304S11	_	Z2CN18.10	X2CrNi18.11	_	2352	304L	OCr19Ni10
SUS304	1.4350	X5CrNi189	304S11	58E	Z6CN18.09	X5CrNi1810	F.3551	2332	304	OCr18Ni9
							F.3541			
							F.3504			
SUS303	1.4305	X12CrNiS188	303S21	58M	Z10CNF18.09	X10CrNiS18.09	F.3508	2346	303	1Cr18Ni9MoZr
SUS304L	_	_	304C12	_	Z3CN19.10	_	_	2333	_	_
SCS19	1.4306	X2CrNi189	304S12	_	Z2CrNi1810	X2CrNi18.11	F.3503	2352	304L	_
SUS301	1.4310	X12CrNi177	_	_	Z12CN17.07	X12CrNi1707	F.3517	2331	301	Cr17Ni7
SUS304LN	1.4311	X2CrNiN1810	304S62	_	Z2CN18.10	_	_	2371	304LN	_
SUS316	1.4401	X5CrNiMo1810	316S16	58J	Z6CND17.11	X5CrNiMo1712	F.3543	2347	316	0Cr17Ni11Mo2
SCS13	1.4308	G-X6CrNi189	304C15	_	Z6CN18.10M	_	_	_	_	_
SCS14	1.4408	G-X6CrNiMo1810	316C16	_	_	_	F.8414	_	_	_
SCS22	1.4581	G-X5CrNiMoNb1810	318C17	_	Z4CNDNb1812M	XG8CrNiMo1811	_	_	_	_
SUS316LN	1.4429	X2CrNiMoN1813	_	-	Z2CND17.13	_	-	2375	316LN	OCr17Ni13Mo
_	1.4404	_	316S13	_	Z2CND17.12	X2CrNiMo1712	_	2348	316L	_
SCS16 SUS316L	1.4435	X2CrNiMo1812	316S13	_	Z2CND17.12	X2CrNiMo1712	_	2353	316L	OCr27Ni12Mo3
_	1.4436	_	316S13	_	Z6CND18-12-03	X8CrNiMo1713	_	2343, 2347	316	-
SUS317L	1.4438	X2CrNiMo1816	317S12	_	Z2CND19.15	X2CrNiMo1816	_	2367	317L	OOCr19Ni13Mo
_	1.4539	VANIO-NA-		_	700NT40.40	_	_	2562	UNS V	
		X1NiCrMo	_		Z6CNT18.10				0890A	_
SUS321	1.4541	X10CrNiTi189	321S12	58B	Z6CNT18.10	X6CrNiTi1811	F.3553	2337	321	40-40NIOT:
		X10CMIII189					F.3523			1Cr18NI9Ti
SUS347	1.4550	V400 NINII 400	347S17	58F	Z6CNNb18.10	X6CrNiNb1811	F.3552	2338	347	40 4001:44011
		X10CrNiNb189					F.3524			1Cr18Ni11Nb
_	1.4571	X10CrNiMoTi1810	320S17	58J	Z6CNDT17.12	X6CrNiMoTi1712	F.3535	2350	316Ti	Cr18Ni12Mo2T
_	1.4583	X10CrNiMoNb1812	_	_	Z6CNDNb1713B	X6CrNiMoNb1713	_	_	318	Cr17Ni12Mo3Mb

Japón	Alen	nania	Reino	Unido	Francia	Italia	España	Suecia	E.E.U.U.	China
JIS	W-nr.	DIN	BS	EN	AFNOR	FNOR UNI		UNE SS		GB
SUH309	1.4828	X15CrNiSi2012	309S24	_	Z15CNS20.12	X6CrNi2520	_	_	309	1Cr23Ni13
SUH310	1.4845	X12CrNi2521	310S24	_	Z12CN2520	X6CrNi2520	F.331	2361	310S	OCr25Ni20
SCS17	1.4406	X10CrNi18.08	_	58C	Z1NCDU25.20	_	F.8414	2370	308	_
_	1.4418	X4CrNiMo165	_	_	Z6CND16-04-01	_	_	_	_	_
_	1.4568	_	316S111	_	Z8CNA17-07	X2CrNiMo1712	_	_	17-7PH	_
	1.4504									
_	1.4563	_	_	_	Z1NCDU31-27-03	_	_	2584	NO8028	_
					Z1CNDU20-18-06AZ			2378	S31254	
SUS321	1.4878	X12CrNiTi189	321S32	58B, 58C	Z6CNT18.12B	X6CrNiTi18 11	F.3523	_	321	1Cr18Ni9Ti

■ ACEROS RESISTENTES AL CALOR

Japón	Alen	Alemania		Unido	Francia	Italia	España	Suecia	E.E.U.U.	China
JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB
SUH330	1.4864	X12NiCrSi3616	_	-	Z12NCS35.16	-	_	-	330	_
SCH15	1.4865	G-X40NiCrSi3818	330C11	-	_	XG50NiCr3919	-	_	HT, HT 50	_

■FUNDICIÓN GRIS

Japón	Alen	nania	Reino	Unido	Francia	Italia	España	Suecia	E.E.U.U.	China
JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB
_	-	_	-	-	-	_	-	0100	-	
FC100	_	GG 10	_	_	Ft 10 D	_	_	0110	No 20 B	_
FC150	0.6015	GG 15	Grade 150	_	Ft 15 D	G15	FG15	0115	No 25 B	HT150
FC200	0.6020	GG 20	Grade 220	_	Ft 20 D	G20	_	0120	No 30 B	HT200
FC250	0.6025	GG 25	Grade 260	_	Ft 25 D	G25	FG25	0125	No 35 B	HT250
_	_	_	_	_	_	_	_	_	No 40 B	_
FC300	0.6030	GG 30	Grade 300	-	Ft 30 D	G30	FG30	0130	No 45 B	HT300
FC350	0.6035	GG 35	Grade 350	_	Ft 35 D	G35	FG35	0135	No 50 B	HT350
_	0.6040	GG 40	Grade 400	-	Ft 40 D	_	_	0140	No 55 B	HT400
_	0.6660	GGL NiCr202	L-NiCuCr202	_	L-NC 202	_	_	0523	A436 Type 2	_

■FUNDICIÓN NODULAR

Japón	Alen	nania	Reino Unido		Francia	Italia	España	Suecia	E.E.U.U.	China
JIS	W-nr.	DIN	BS	BS EN		UNI	UNE	SS	AISI/SAE	GB
FCD400	0.7040	GGG 40	SNG 420/12	-	FCS 400-12	GS 370-17	FGE 38-17	07 17-02	60-40-18	QT400-18
_	-	GGG 40.3	SNG 370/17	_	FGS 370-17	_	_	07 17-12	_	_
_	0.7033	GGG 35.3	_	_	_	_	_	07 17-15	_	_
FCD500	0.7050	GGG 50	SNG 500/7	-	FGS 500-7	GS 500	FGE 50-7	07 27-02	80-55-06	QT500-7
_	0.7660	GGG NiCr202	Grade S6	_	S-NC202	_	_	07 76	A43D2	_
_	-	GGG NiMn137	L-NiMn 137	-	L-MN 137	-	-	07 72	-	_
FCD600	_	GGG 60	SNG 600/3	-	FGS 600-3	_	_	07 32-03	_	QT600-3
FCD700	0.7070	GGG 70	SNG 700/2	-	FGS 700-2	GS 700-2	FGS 70-2	07 37-01	100-70-03	QT700-18

■FUNDICIÓN MALEABLE

Japón	Alen	Alemania		Reino Unido		Italia	España	Suecia	E.E.U.U.	China
JIS	W-nr.	DIN	BS	EN	AFNOR	UNI	UNE	SS	AISI/SAE	GB
FCMB310	-	-	8 290/6	-	MN 32-8	-	_	08 14	-	-
FCMW330	_	GTS-35	B 340/12	-	MN 35-10	_	_	08 15	32510	_
FCMW370	0.8145	GTS-45	P 440/7	-	Mn 450	GMN45	-	08 52	40010	-
FCMP490	0.8155	GTS-55	P 510/4	-	MP 50-5	GMN55	-	08 54	50005	_
FCMP540	_	GTS-65	P 570/3	-	MP 60-3	-	-	08 58	70003	-
FCMP590	0.8165	GTS-65-02	P 570/3	-	Mn 650-3	GMN 65	-	08 56	A220-70003	-
FCMP690	<u> </u>	GTS-70-02	P 690/2	_	Mn 700-2	GMN 70	_	08 62	A220-80002	_

ACERO DE MATRIZ

Clasificación	JIS (Otros)	Aichi Steel Works	Uddeholm	Kobe Steel	Sumitomo Metal Industries	Daido Steel	Nippon Koshuha	Hitachi Metals	Mitsubishi Steel Manufacturing
Acero al carbono	S50C	AUK1		KTSM2A	SD10	PDS1	KPM1		MT50C
para estructuras				KTSM21	SD17	PXZ			
•	S55C SCM440	AUK11		KTSM22 KTSM3A	SD21 SD61	PDS3			
Acero aleado	301/1440	AUKTI		KTSM31	3001	FD33			
para estructuras	SCM445		HOLDAX						
Acero al C para herramientas	SK3	SK3				YK3	K3	YC3	
	SKS3 SKS31 SKS93 SKD1	SKS3 SK301				GOA GO31 YK30	KS3 K31 K3M KD1	SGT YCS3 CRD	
	SKD11 SKD11 SKD11	SKD11 AUD11		KAD181		DC11 DC3	KD11 KD11V KDQ	SLD SLD2	
	SKD12	SX4 SX44	RIGOR			DC12	KD12 FH5	SCD	
Acero aleado para herramientas		SX105V TCD				DO50		01.50	
(Trabajo en frío)						DC53 PD613 GO4	KD21	SLD8 ACD37	
						GO5 GO40F		HMD5 HPM2T	
								YSM HPM31	
								HMD1	
							KDM5	HMD5	
							KD11S	ACD6 ACD8	
Acero aleado para	(P20)		IMPAX	KTSM3M		PX5	KPM30	ACD9 HPM2	MT24M
herramientas	(P20)							HPM7	
(Trabajo en frío y	(P21)			KTSM40EF KTSM40E		NAK55 NAK80	KAP KAP2	HPM1 HPM50	
otros)				KI SIVI40E		GLD2	NAPZ	CENA1	
	SKD4					DH4	KD4	YDC	
	SKD5					DH5	KD5	HDC	
	SKD6 SKD61	SKD61	Over M Suprem			DH6 DHA1	KD6 KDA	DAC	
	SKD61	ONDOT	Suprem			DII/(I	MFA		
	SKD62	SKD62				DH62	KDB	DBC	
	SKT4 SKD7					GFA DH72	KTV KDH1	DM YEM	
	(H10)					DH72	KDHT	I CIVI	
	SKD8		QRO80M			DH41	KDF	MDC	
								YHD40	
						DH71			
						DH42 DH21			
Acero aleado para						DITET	KDW		
herramientas (Trabajo en caliente)							KDHM AE31		
(Travajo en Canente)							ALUI	YEM4	
								YHD50	
	SKT4 6F4	SKT4A MPH						YHD26	
	SKT4					DH31	KDA1	DAC3	
							KDA5	DAC10	
						0572		DAC40	
						GF78 DH76		DAC45 DAC55	
						וווט	TD3	DAGGG	
						DH2F	KDAS	FDAC	
								YHD3	
								MDC-K YEM-K	

Clasificación	JIS (Otros)	Aichi Steel Works	Uddeholm	Kobe Steel	Sumitomo Metal Industries	Daido Steel	Nippon Koshuha	Hitachi Metals	Mitsubishi Steel Manufacturing
	SKH51					MH51	H51	YXM1	
	SKH55					MH55	HM35	YXM4	
	SKH57					MH57	MV10	XVC5	
						MH8	NK4	YXM60	
						MH24			
						MH7V1			
Acero rápido para herramientas						MH64			
						VH54	HV2	XVC11	
							НМ3	YXM7	
						MH85	KDMV	YXR3	
						MH88	HM9TL	YXR4	
								YXR7	
								YXR35	
			ASP23	KHA32		DEX20		HAP10	
			ASP30	KHA30		DEX40		HAP40	
				KHA3VN		DEX60		HAP50	
Acero rápido sinterizado				KHA30N		DEX70		HAP63	
para herramientas				KHA33N		DEX80		HAP72	
				KHA50					
				KHA77					
			ASP60	KHA60					
	SUS403					GLD1			
	SUS420		STAVAX			S-STAR	KSP1	НРМ38	
Acero inoxidable	SUS440C		ELMAX (Polvo)	KAS440 (Polvo)		SUS440C	KSP3		
7.00.0 11.07.100.00	SUS420							SUS420	
	SUS630					NAK101	U630	PSL	
	(414)								
Acero martensítico envejecido						MAS1C	KMS18-20	YAG	DMG300
Aleaciones termo-resistentes								HRNC	

RUGOSIDAD

RUGOSIDAD (Del JIS B 601-1994)

Tipo	Código	Descripción	Ejemplo de medida (Figura)
Rugosidad teórica	Ra	Ra es el valor obtenido en la fórmula siguiente y expresado en micrones. Medida aritmética de los valores absolutos de las desviaciones del perfil, en los límites de la longitud básica. Se expresa y=f (x): $Ra = \frac{1}{\varrho} \int_{-\varrho}^{\varrho} f(x) dx$	Ra 1 100 M
Altura máxima	Rz	Rz es la distancia máxima entre la línea de cresta mayor y el valle más profundo, tomados en la dirección de la línea principal de la muestra, y expresada en micrones (μ m). Nota) Al calcular Rz, es posible encontrar una porción sin ningún valle o cresta excepcionalmente altos o profundos; lo cual puede ser tomado como un defecto. $Rz=R_P+Rv$	
Valor de la rugosidad en los diez puntos	Rzjis	RzJIS es la suma de los valores absolutos de las alturas de las cinco crestas (Yp) y de la profundidad de los cinco valles (Yv) más profundos; medidos en dirección vertical de la muestra y expresada en micrones (μ m). $RzJIS = \frac{(YpI+Yp2+Yp3+Yp4+Yp5)+(YvI+Yv2+Yv3+Yv4+Yv5)}{5}$	Yp1, Yp2, Yp3, Yp4, Yp5: alturas de las cinco cresta más altas de la porción corespondiente a la longitud de referencia l. Yv1, Yv2, Yv3, Yv4, Yv5: alturas de los cinco valles más profundos de la porción corespondiente a la longitud de referencia l.

■RELACIÓN ENTRE RUGOSIDAD TEÓRICA (Ra) Y DESIGNACIÓN CONVENCIONAL (DATO DE REFERENCIA)

Rug	osidad teórica Ra	Altura máxima Rz	Valor de la rugosidad en los diez puntos R zJIS	Longitud de muestreo para	Marca de terminación
Series estánda	Valor del corte λc (mm)	Ser	ies estándar	I (mm)	convencional
0.012 a	0.08	0.05s	0.05z	0.08	
0.025 a	0.25	0.1 s	0.1 z	0.06	
0.05 a	0.25	0.2 s	0.2 z	0.25	$\nabla\nabla\nabla\nabla$
0.1 a		0.4 s	0.4 z	0.25	
0.2 a		0.8 s	0.8 z		
0.4 a	0.8	1.6 s 1.6 z		0.0	
0.8 a		3.2 s	3.2 z	0.8	$\nabla\nabla\nabla$
1.6 a		6.3 s	6.3 z		
3.2 a	0.5	12.5 s	12.5 z		
6.3 a	2.5	25 s	25 z	2.5	∇
12.5 a		50 s	50 z		
25 a	8	8 100 s 100 z		abla	
50 a		200 s	200 z	8	
100 a		400 s	400 z	_	_

[★]La correlación entre los tres, es sólo por conveniencia y no es exacta.

^{*}Ra: La longitud evaluada de Rz y Rzıls, es el valor límite y la longitud del muestreo multiplicadas por 5, respectivamente.

TABLA DE COMPARACIÓN DE DUREZAS

VALORES DE LAS DUREZAS DEL ACERO

	Brinell (HB)	SLS	Dureza Rockwell				ē	D		Brinell (HB)	Dureza Rockwell					ē	D
Bola de 10mm	n, Carga: 3000kgf	Dureza Vickers	Escala A,	Escala B,	Escala C,	Escala D,	Shore	Resisténcia a la tracción	Bola de 10mm	n, Carga: 3000kgf	Dureza Vickers	Escala A,	Escala B	Escala C.	Escala D.	3 Shore	Resisténcia a la tracción
Bola	Bola de	reza	Carga: 60kgf, Punta de	Carga: 100kgf, Bola de	Carga: 150kgf, Punta de	Carga: 100kgf, Punta de	Dureza	(Aprox.)	Bola	Bola de	reza	Carga: 60kgf, Punta de	Carga: 100kgf, Bola de		Carga: 100kgf, Punta de	Dureza	(Aprox.)
estándar	metal duro	-	diamante	1/16"	diamante	diamante	1	Мра	estándar	metal duro	-	diamante	1/16"	diamante	diamante		Мра
		(HV)	(HRA)	(HRB)	(HRC)	(HRD)	(HS)				(HV)	(HRA)	(HRB)	(HRC)	(HRD)	(HS)	
_	_	940 920	85.6 85.3	_	68.0 67.5	76.9 76.5	97 96	_	429	429	455	73.4	-	45.7	59.7	61	1510
_	_	900	85.0		67.0	76.5 76.1	95	_	415 401	415 401	440 425	72.8 72.0	_	44.5 43.1	58.8 57.8	59 58	1460 1390
_	(767)	880	84.7	_	66.4	75.7	93	_	388	388	410	71.4		41.8	56.8	56	1330
_	(757)	860	84.4	_	65.9	75.3	92	_	375	375	396	70.6	_	40.4	55.7	54	1270
_	(745)	840	84.1	_	65.3	74.8	91	_	363	363	383	70.0	-	39.1	54.6	52	1220
_	(733)	820	83.8	_	64.7	74.3	90	_	352	352	372	69.3	(110.0)	37.9	53.8	51	1180
_	(722) (712)	800	83.4		64.0	73.8	88	_	341	341	360	68.7	(109.0)	36.6	52.8	50	1130
_	(712)	780	83.0	_	63.3	73.3	87		331 321	331 321	350 339	68.1 67.5	(108.5) (108.0)	35.5 34.3	51.9 51.0	48 47	1095 1060
_	(698)	760	82.6	_	62.5	72.6	86	_	321	321	339	07.5	(100.0)	34.3	31.0	47	1000
									311	311	328	66.9	(107.5)	33.1	50.0	46	1025
_	(684)	740	82.2	_	61.8	72.1	-	_	302	302	319	66.3	(107.0)	32.1	49.3	45	1005
_	(682)	737	82.2	_	61.7	72.0	84	_	293	293	309	65.7	(106.0)	30.9	48.3	43	970
_	(670) (656)	720 700	81.8 81.3	_	61.0 60.1	71.5 70.8	83	_	285	285	301	65.3	(105.5)	29.9	47.6	-	950
_	(653)	697	81.2	_	60.0	70.8	81	_	277	277	292	64.6	(104.5)	28.8	46.7	41	925
	(000)		01.2		00.0		.		269	269	284	64.1	(104.0)	27.6	45.9	40	895
_	(647)	690	81.1	_	59.7	70.5	-	_	262	262	276	63.6	(104.0)	26.6	45.9 45.0	39	875
_	(638)	680	8.08	_	59.2	70.1	80	_	255	255	269	63.0	(103.0)	25.4	44.2	38	850
_	630	670	80.6	_	58.8	69.8	-	_	248	248	261	62.5	(101.0)	24.2	43.2	37	825
_	627	667	80.5	_	58.7	69.7	79	_	241	241	253	61.8	100	22.8	42.0	36	800
_	_	677	80.7	_	59.1	70.0	_	_									
_	601	640	79.8	_	57.3	68.7	77	_	235	235	247	61.4	99.0	21.7	41.4	35	785
			. 0.0		0.10				229	229	241	60.8	98.2	20.5	40.5	34	765
_	_	640	79.8	_	57.3	68.7	-	_	223 217	223 217	234 228	_	97.3 96.4	(18.8) (17.5)	_	33	- 725
_	578	615	79.1	_	56.0	67.7	75	_	217	217	222	_	95.5	(16.0)	_	-	705
		007	70.0		55.0	07.4			212	212			00.0	(10.0)			700
_	 555	607 591	78.8 78.4	_	55.6 54.7	67.4 66.7	73	2055	207	207	218	_	94.6	(15.2)	_	32	690
_	333	391	70.4	_	54.7	00.7	13	2000	201	201	212	_	93.8	(13.8)	_	31	675
_	_	579	78.0	_	54.0	66.1	_	2015	197	197	207	_	92.8	(12.7)	_	30	655
_	534	569	77.8	_	53.5	65.8	71	1985	192	192	202	_	91.9	(11.5)	_	29	640
									187	187	196	_	90.7	(10.0)	_	-	620
_	_ 	533	77.1	_	52.5	65.0		1915	183	183	192	_	90.0	(9.0)	_	28	615
_	514	547	76.9	_	52.1	64.7	70	1890	179	179	188	_	89.0	(8.0)	_	27	600
(495)	_	539	76.7	_	51.6	64.3	_	1855	174	174	182	_	87.8	(6.4)	_	_	585
_	_	530	76.4	_	51.1	63.9	_	1825	170	170	178	_	86.8	(5.4)	_	26	570
	495	528	76.3	_	51.0	63.8	68	1820	167	167	175	_	86.0	(4.4)	_	-	560
									400					(0.0)			
(477)	_	516	75.9	_	50.3	63.2	-	1780	163	163	171	_	85.0	(3.3)	_	25	545
_	477	508	75.6	_	49.6	62.7	-	1740	156 149	156 149	163 156	_	82.9 80.8	(0.9)	_	23	525 505
	477	508	75.6	_	49.6	62.7	66	1740	143	143	150	_	78.7		_	22	490
(461)	_	495	75.1	_	48.8	61.9	_	1680	137	137	143	_	76.4	_	_	21	460
_	_	491	74.9	_	48.5	61.7	_	1670									
	461	491	74.9	_	48.5	61.7	65		131	131	137	_	74.0	_	_	-	450
									126	126	132	_	72.0	_	_	20	435
444	_	474	74.3	_	47.2	61.0	-	1595	121	121	127	_	69.8	_	_	19	415
_	_ 444	472 472	74.2 74.2		47.1 47.1	60.8 60.8	63	1585 1585	116 111	116 111	122 117	_	67.6 65.7	_	_	18 15	400 385
	444	412	14.2		41.1	00.0	US	1303		111	117	_	05.7			15	303

Nota 1) La lista de arriba es la editada en el Libro de los Metales AMS; con la resistencia a la tracción aproximada en valores métricos y la dureza Brinell por encima del valor recomendado.

Nota 2) 1MPa=1N/mm²

Nota 3) Valores entre son raramente utilizados como referencia. Esta lista ha sido elaborada a partir de las normas JIS del Acero.

TABLA TOLERANCIA DE AGUJEROS

las dime está	ación de ensiones indar im)						Tipos o	de tolera	ncias ge	eométric	as de a	gujeros					
>	≤	B10	C9	C10	D8	D9	D10	E7	E8	E9	F6	F7	F8	G6	G7	Н6	H7
_	3	+180 +140	+85 +60	+100 +60	+34 +20	+45 +20	+60 +20	+24 +14	+28 +14	+39 +14	+12 +6	+16 +6	+20 +6	+8 +2	+12 +2	+6 0	+10
3	6	+188 +140	+100 +70	+118 +70	+48 +30	+60 +30	+78 +30	+32 +20	+38 +20	+50 +20	+18 +10	+22 +10	+28 +10	+12 +4	+16 +4	+8	+12
6	10	+208 +150	+116 +80	+138 +80	+62 +40	+76 +40	+98 +40	+40 +25	+47 +25	+61 +25	+22 +13	+28 +13	+35 +13	+14 +5	+20 +5	+9 0	+15 0
10	14	+220	+138	+165	+77	+93	+120	+50	+59	+75	+27	+34	+43	+17	+24	+11	+18
14	18	+150	+95	+95	+50	+50	+50	+32	+32	+32	+16	+16	+16	+6	+6	0	0
18	24	+244	+162	+194	+98	+117	+149	+61	+73	+92	+33	+41	+53	+20	+28	+13	+21
24	30	+160	+110	+110	+65	+65	+65	+40	+40	+40	+20	+20	+20	+7	+7	0	0
30	40	+270 +170	+182	+220 +120	+119	+142	+180	+75	+89	+112	+41	+50	+64	+25	+34	+16	+25
40	50	+280 +180	+192 +130	+230 +130	+80	+80	+80	+50	+50	+50	+25	+25	+25	+9	+9	0	0
50	65	+310 +190	+214 +140	+260 +140	+146	+174	+220	+90	+106	+134	+49	+60	+76	+29	+40	+19	+30
65	80	+320 +200	+224 +150	+270 +150	+100	+100	+100	+60	+60	+60	+30	+30	+30	+10	+10	0	0
80	100	+360 +220	+257 +170	+310 +170	+174	+207	+260	+107	+126	+159	+58	+71	+90	+34	+47	+22	+35
100	120	+380 +240	+267 +180	+320 +180	+120	+120	+120	+72	+72	+72	+36	+36	+36	+12	+12	0	0
120	140	+420 +260 +440	+300 +200	+360 +200	. 200	+245	+305	+125	.440	.405	160	.00	1406	.20	.54	.05	. 40
140	160	+280 +470	+310 +210 +330	+370 +210 +390	+208 +145	+145	+145	+85	+148 +85	+185 +85	+68 +43	+83 +43	+106 +43	+39 +14	+54 +14	+25 0	+40
160	180	+310 +525	+355 +355	+230 +425													
180	200	+340	+240	+240	+242	+285	+355	+146	+172	+215	+79	+96	+122	+44	+61	+29	+46
200	225	+380	+260	+260	+170	+170	+170	+100	+100	+100	+50	+50	+50	+15	+15	0	0
225	250	+420	+280	+280													
250	280	+480	+300	+300	+271 +190	+320 +190	+400 +190	+162 +110	+191 +110	+240 +110	+88 +56	+108 +56	+137 +56	+49 +17	+69 +17	+32	+52 0
280	315	+540	+330	+330	. 100	. 100	. 100				. 00	. 50	. 50				
315	355	+600	+360	+360	+299 +210	+350 +210	+440 +210	+182 +125	+214 +125	+265 +125	+98 +62	+119 +62	+151 +62	+54 +18	+75 +18	+36 0	+57 0
355	400	+680	+400	+400	.210	.210	.210	. 120	. 120	. 120	. 02	. 02	. 02	, 10	, 10	0	<u> </u>
400	450	+760 +1090	+440	+440	+327 +230	+385 +230	+480 +230	+198 +135	+232 +135	+290 +135	+108 +68	+131 +68	+165 +68	+60 +20	+83 +20	+40	+63 0
450	500	+840	+480	+480	. 200	. 200	. 200	. 100	. 100	. 100	. 00	.00	.00	.20	.20		0

Nota) Los valores mostrados en la parte superior de las respectivas líneas, corresponden al valor máximo; mientras que los valores mostrados en la parte inferior de las respectivas líneas, corresponden al valor mínimo.

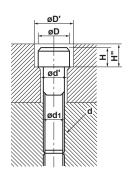
Tipos de tolerancias geométricas de agujeros

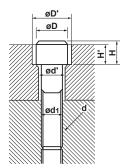
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-18 -28 -19 -31 -22 -37	X7 -20 -30 -24 -36
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-19 -31 -22	-24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-31 -22	
+22 +36 +58 ±4.5 ±7 +2 +5 -3 0 -7 -4 -12 -9 -13 -17 - 0 0 0 0 ±4.5 ±7 -7 -10 -12 -15 -16 -19 -21 -24 -28 -32 - +27 +43 +70 +5.5 ±9 +2 +6 -4 0 -9 -5 -15 -11 -16 -21 -	-22	-36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20
+27 +43 +70 +55 +9 +2 +6 -4 0 -9 -5 -15 -11 -16 -21 -	01	-28 -43
		-33
0 0 0 0 55.5 59 -9 -12 -15 -18 -20 -23 -26 -29 -34 -39 -	- 26	-51
	-44	-38
		- 56
	-33	-46
+33 +52 +84 ±6.5 ±10 +2 +6 -4 0 -11 -7 -18 -14 -20 -27 -11 -15 -17 -21 -24 -28 -31 -35 -41 -48 -33	-54	-67
0 0 0 -35 -41 -48 -33 -54	-40 -61	−56 −77
-39	—51	
+39 +62 +100 +3 +7 -4 0 -12 -8 -21 -17 -25 -34 -64	-7 6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-61	_
	-86	
-30 -42 -55	-7 6	
	-106	_
0 0 0 -38 -18 -15 -21 -24 -30 -33 -39 -45 -51 -32 -48 -64 -62 -78 -94	− 91 − 121	
	-111	
+54 +87 +140 +4 +10 -6 0 -16 -10 -30 -24 -73 -93 -113	-146	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-131	_
	- 166	
-88 -117 -147		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	_
0 0 0 -21 -28 -33 -40 -45 -52 -61 -68 -90 -125 -159 -53 -93 -131		
93 -133 -171		
-60 -105		
+72	_	_
0 0 0 0 -24 -33 -37 -46 -51 -60 -70 -79 -109 -159		
+81 +130 +210 +5 +16 -9 0 -25 -14 -47 -36 -126		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	_
-87		
+89 +140 +230 ±18 ±28 +7 +17 -10 0 -26 -16 -51 -41 -144	_	_
0 0 0 0 -29 -40 -46 -57 -62 -73 -87 -98 -93		
+97 +155 +250 +8 +18 -10 0 -27 -17 -55 -45 -166		
0 0 0 0 ±20 ±31 -32 -45 -50 -63 -67 -80 -95 -108 -109 - -	_	_

TABLA DE TOLERANCIAS

las dime está	ación de ensiones indar nm)	Tipos de tolerancias geométricas de ejes														
>	≤	b9	с9	d8	d9	e7	e8	е9	f6	f7	f8	g5	g6	h5	h6	h7
_	3	-140 -165	-60 -85	-20 -34	-20 -45	-14 -24	-14 -28	-14 -39	-6 -12	-6 -16	-6 -20	-2 -6	-2 -8	0 -4	0 -6	0 —10
3	6	-140 -170	-70 -100	-30 -48	-30 -60	-20 -32	-20 -38	-20 -50	-10 -18	-10 -22	-10 -28	-4 -9	-4 -12	0 -5	0 -8	0 -12
6	10	-150 -186	-80 -116	-40 -62	-40 -76	-25 -40	-25 -47	-25 -61	-13 -22	-13 -28	-13 -35	-5 -11	-5 -14	0 -6	0 -9	0 -15
10	14	-150	- 95	-50	-50	-32	-32	-32	-16	-16	-16	-6	-6	0	0	0
14	18	-193	-138	-77	-93	-5 0	-5 9	-7 5	-27	-34	-43	-14	—17	-8	- 11	- 18
18	24	-160	-110	-65	-65	-40	-40	-40	-20	-20	-20	- 7	- 7	0	0	0
24	30	- 212	-162	-98	- 117	-61	-7 3	-92	-33	-41	-53	-16	-20	-9	- 13	- 21
30	40	-170 -232	-120 -182	-80	-80	-50	-50	-50	-25	-25	-25	-9	-9	0	0	0
40	50	-180 -242	-130 -192	— 119	-142	-7 5	-89	-112	-41	-50	-64	-20	-25	-11	-1 6	-25
50	65	-190 -264	-140 -214	-100	-100	-60	-60	-60	-30	-30	-30	-10	-10	0	0	0
65	80	-200 -274	-150 -224	-146	-174	- 90	-106	-134	-49	-60	-7 6	-23	-29	-13	-19	-30
80	100	-220 -307	-170 -257	-120	-120	-7 2	-72	- 72	-36	-36	-36	-12	-12	0	0	0
100	120	-240 -327	-180 -267	-174	-207	-107	-126	-159	-58	— 71	-90	-27	-34	— 15	-22	-35
120	140	-260 -360	-200 -300												_	_
140	160	-280 -380	-210 -310	-145 -208	− 145 − 245	-85 -125	-85 -148	-85 -185	-43 -68	-43 -83	-43 -106	-14 -32	-14 -39	0 -18	0 -25	0 -40
160	180	-310 -410	-230 -330													
180	200	-340 -455	-240 -355	470	470	400	400	400	50	50	50	45	45			0
200	225	-380 -495 -420	-260 -375	—170 —242	−170 −285	-100 -146	-100 -172	-100 -215	-50 -79	-50 -96	-50 -122	-15 -35	-15 -44	0 -20	0 -29	0 46
225	250	-420 -535 -480	-280 -395 -300													
250	280	-480 -610 -540	-300 -430 -330	-190 -271	-190 -320	-110 -162	-110 -191	-110 -240	-56 -88	-56 -108	-56 -137	-17 -40	-17 -49	0 -23	0 -32	0 —52
280	315	-670 -600	-360 -360	2/1	320	102	191	240	00	100	131	40	43	23	52	J2
315	355	-600 -740 -680	-500 -400	-210 -299	-210 -350	-125 -182	-125 -214	-125 -265	-62 -98	-62 -119	-62 -151	-18 -43	-18 -54	0 -25	0 -36	0 —57
355	400	-820 -760	-540 -540	233	330	102	214	200	90	113	101	45	34	25	30	31
400	450	-760 -915 -840	-595 -480	-230 -327	-230 -385	-135 -198	-135 -232	-135 -290	-68 -108	-68 -131	-68 -165	-20 -47	-20 -60	0 -27	0 -40	0 -63
450	500	-995	-635	521	000	130	202	230	100	131	100	71				

Nota) Los valores mostrados en la parte superior de las respectivas líneas, corresponden al valor máximo; mientras que los valores mostrados en la parte inferior de las respectivas líneas, corresponden al valor mínimo.


	Tipos de tolerancias geométricas de ejes														
h8	h9	js5	js6	js7	k5	k6	m5	m6	n6	p6	r6	s6	t6	u6	x6
0	0	±2	±3	±5	+4	+6	+6	+8	+10	+12	+16	+20	_	+24	+26
14	-25				0	0	+2	+2	+4	+6	+10	+14		+18	+20
0 —18	-30	±2.5	±4	±6	+6 +1	+9 +1	+9 +4	+12 +4	+16 +8	+20 +12	+23 +15	+27 +19	_	+31 +23	+36 +28
0	0				+7	+10	+12	+15	+19	+24	+28	+32		+37	+43
-22	-36	±3	±4.5	±7	+1	+1	+6	+6	+10	+15	+19	+23	_	+28	+34
															+51
0	0	±4	±5.5	±9	+9	+12	+15	+18	+23	+29	+34	+39	_	+44	+40
- 27	-43				+1	+1	+7	+7	+12	+18	+23	+28		+33	+56
														+54	+45 +67
0	0				+11	+15	+17	+21	+28	+35	+41	+48	_	+41	+54
-33	-52	±4.5	±6.5	±10	+2	+2	+8	+8	+15	+22	+28	+35	+54	+61	+77
													+41	+48	+64
													+64	+76	
0	0	±5.5	±8	±12	+13	+18	+20	+25	+33	+42	+50	+59	+48	+60	_
- 39	-62				+2	+2	+9	+9	+17	+26	+34	+43	+70 +54	+86 +70	
-											+60	+72	+85	+106	
0	0	105	105	1.45	+15	+21	+24	+30	+39	+51	+41	+53	+66	+87	
-46	-74	±6.5	±9.5	±15	+2	+2	+11	+11	+20	+32	+62	+78	+94	+121	_
											+43	+59	+75	+102	
					40	. 0.5		.05	45		+73	+93	+113	+146	
0 —54	0 -87	±7.5	±11	±17	+18 +3	+25 +3	+28 +13	+35 +13	+45 +23	+59 +37	+51 +76	+71 +101	+91 +126	+124 +166	_
-54	-07				_ +ა	_ ⊤ა	713	+13	T23	+31	+54	+79	+104	+144	
-											+88	+117	+147	. 144	
											+63	+92	+122		
0	0	±9	±12.5	±20	+21	+28	+33	+40	+52	+68	+90	+125	+159	_	_
-63	-100		_ 12.0		+3	+3	+15	+15	+27	+43	+65	+100	+134		
											+93 +68	+133 +108	+171 +146		
											+106	+151	+140		
											+77	+122			
0	0	±10	±14.5	±23	+24	+33	+37	+46	+60	+79	+109	+159			
-7 2	-115	±10	±14.5	±23	+4	+4	+17	+17	+31	+50	+80	+130	_	_	_
											+113	+169			
											+84	+140			
0	0				+27	+36	+43	+52	+66	+88	+126 +94				
- 81	-130	±11.5	±16	±26	+4	+4	+20	+20	+34	+56	+130	_	_	_	_
											+98				
											+144				
0	0	±12.5	±18	±28	+29	+40	+46	+57	+73	+98	+108	_	_	_	_
- 89	-140			_	+4	+4	+21	+21	+37	+62	+150				
											+114 +166				
0	0				+32	+45	+50	+63	+80	+108	+126				
- 97	-155	±13.5	±20	±31	+5	+5	+23	+23	+40	+68	+172	_	_	_	_
											+132				


TAMAÑO DEL ORIFICIO DEL PERNO DE CABEZA HUECA HEXAGONAL

DIMENSIONES DEL ALOJAMIENTO PARA LAS CABEZAS HEXAGONALES DE LOS TORNILLOS

- 1 1	lnic	ากป	mm
U	טוווי	ıau	11111

Dimensiones nominales de la rosca d	МЗ	M4	M5	M6	M8	M10	M12	M14	M16	M18	M20	M22	M24	M27	M30
d1	3	4	5	6	8	10	12	14	16	18	20	22	24	27	30
d'	3.4	4.5	5.5	6.6	9	11	14	16	18	20	22	24	26	30	33
D	5.5	7	8.5	10	13	16	18	21	24	27	30	33	36	40	45
D'	6.5	8	9.5	11	14	17.5	20	23	26	29	32	35	39	43	48
Н	3	4	5	6	8	10	12	14	16	18	20	22	24	27	30
H'	2.7	3.6	4.6	5.5	7.4	9.2	11	12.8	14.5	16.5	18.5	20.5	22.5	25	28
H"	3.3	4.4	5.4	6.5	8.6	10.8	13	15.2	17.5	19.5	21.5	23.5	25.5	29	32

CONOS ESTÁNDAR

Fig.1
Cono BT

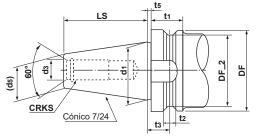
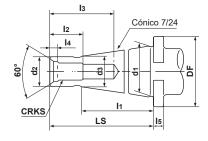



Fig.2 Cono NT

●Tabla 1 Cono BT (Fig.1)

	_	J /									
Código	DF	DF_2	t1	t2	t3	t5	d1	d3	LS	CRKS	d5
BT35	53	43	20	10	13.0	2	38.1	13	56.5	M12×1.75	21.62
BT40	63	53	25	10	16.6	2	44.45	17	65.4	M16×2	25.3
BT45	85	73	30	12	21.2	3	57.15	21	82.8	M20×25	33.1
BT50	100	85	35	15	23.2	3	69.85	25	101.8	M24×3	40.1
BT60	155	135	45	20	28.2	3	107.95	31	161.8	M30×3.5	60.7

●Tabla 2 Cono NT (Fig.2)

Tabla	2 00	1) 111 (1	19.2/										
						CF	KS						
Códi	go	d1	d2	LS	l1	Rosca Métrica	Rosca en pulgadas	l2	13	d3	I 4	DF	I 5
NT3	0	31.75	17.4	70	50	M12	W 1/2	24	50	16.5	6	50	8
NT4	.0	44.45	25.3	95	67	M16	W 5/8	30	70	24	7	63	10
NT5	0	69.85	39.6	130	105	M24	W 1	45	90	38	11	100	13
NT6	0	107.95	60.2	210	165	M30	W 11/4	56	110	58	12	170	15

Fig.3
Cono Morse
(Mango con lengueta)

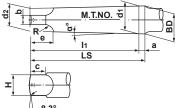
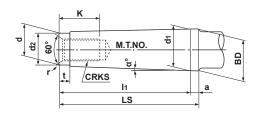



Fig.4
Cono Morse
(Mango con rosca)

●Tabla 3 Mango con lengueta (Fig.3)

Código de cono morse	α°	d1	а	BD	d2	Н	l1	LS	b	С	е	R	r
0	1°29′27″	9.045	3	9.201	6.104	6	56.5	59.5	3.9	6.5	10.5	4	1
1	1°25′43″	12.065	3.5	12.240	8.972	8.7	62.0	65.5	5.2	8.5	13.5	5	1.2
2	1°25′50″	17.780	5	18.030	14.034	13.5	75.0	80.0	6.3	10	16	6	1.6
3	1°26′16″	23.825	5	24.076	19.107	18.5	94.0	99	7.9	13	20	7	2
4	1°29′15″	31.267	6.5	31.605	25.164	24.5	117.5	124	11.9	16	24	8	2.5
5	1°30′26″	44.399	6.5	44.741	36.531	35.7	149.5	156	15.9	19	29	10	3
6	1°29′36″	63.348	8	63.765	52.399	51.0	210.0	218	19	27	40	13	4
7	1°29′22″	83.058	10	83.578	68.185	66.8	286.0	296	28.6	35	54	19	5

●Tabla 4 Mango con rosca (Fig.4)

Código de cono morse	α°	d1	а	BD	d	d2	l1	LS	t	r	CRKS	К
0	1°29′27″	9.045	3	9.201	6.442	6	50	53	4	0.2	_	_
1	1°25′43″	12.065	3.5	12.240	9.396	9	53.5	57	5	0.2	M6	16
2	1°25′50″	17.780	5	18.030	14.583	14	64	69	5	0.2	M10	24
3	1°26′16″	23.825	5	24.076	19.759	19	81	86	7	0.6	M12	28
4	1°29′15″	31.267	6.5	31.605	25.943	25	102.5	109	9	1.0	M16	32
5	1°30′26″	44.399	6.5	44.741	37.584	35.7	129.5	136	9	2.5	M20	40
6	1°29′36″	63.348	8	63.765	53.859	51	182	190	12	4.0	M24	50
7	1°29′22″	83.058	10	83.578	70.052	65	250	260	18.5	5.0	M33	80

UNIDADES DEL SISTEMA INTERNACIONAL

■TABLA DE CONVERSIÓN para CAMBIO FÁCIL entre UNIDADES DEL SI (El tipo negrita indica la unidad SI)

Presión

Pa	kPa	MPa	bar	kgf/cm ²	atm	mmH2O	mmHg o Torr
1	1×10 ⁻³	1×10 ⁻⁶	1×10 ⁻⁵	1.01972×10 ⁻⁵	9.86923×10 ⁻⁶	1.01972×10 ⁻¹	7.50062×10 ⁻³
1×10 ³	1	1×10 ⁻³	1×10 ⁻²	1.01972×10 ⁻²	9.86923×10 ⁻³	1.01972×10 ²	7.50062
1×10 ⁶	1×10 ³	1	1×10	1.01972×10	9.86923	1.01972×10 ⁵	7.50062×10 ³
1×10 ⁵	1×10 ²	1×10 ⁻¹	1	1.01972	9.86923×10 ⁻¹	1.01972×10 ⁴	7.50062×10 ²
9.80665×10 ⁴	9.80665×10	9.80665×10 ⁻²	9.80665×10 ⁻¹	1	9.67841×10 ⁻¹	1×10 ⁴	7.35559×10 ²
1.01325×10 ⁵	1.01325×10 ²	1.01325×10 ⁻¹	1.01325	1.03323	1	1.03323×10 ⁴	7.60000×10 ²
9.80665	9.80665×10 ⁻³	9.80665×10 ⁻⁶	9.80665×10 ⁻⁵	1×10 ⁻⁴	9.67841×10 ⁻⁵	1	7.35559×10 ⁻²
1.33322×10 ²	1.33322×10 ⁻¹	1.33322×10 ⁻⁴	1.33322×10 ⁻³	1.35951×10 ⁻³	1.31579×10 ⁻³	1.35951×10	1

Nota 1) 1Pa=1N/m²

Fuerza

N	dyn	kgf
1	1×10 ⁵	1.01972×10 ⁻¹
1×10 ⁻⁵	1	1.01972×10 ⁻⁶
9.80665	9.80665×10 ⁵	1

Tensión

Pa	MPa o N/mm ²	kgf/mm ²	kgf/cm ²
1	1×10 ⁻⁶	1.01972×10 ⁻⁷	1.01972×10 ⁻⁵
1×10 ⁶	1	1.01972×10 ⁻¹	1.01972×10
9.80665×10 ⁶	9.80665	1	1×10 ²
9.80665×10 ⁴	9.80665×10 ⁻²	1×10 ⁻²	1

Nota 1) 1Pa=1N/m²

● Trabajo / Energía / Cantidad de calor

J	kW∙h	kgf•m	kcal
1	2.77778×10 ⁻⁷	1.01972×10 ⁻¹	2.38889×10 ⁻⁴
3.600 ×10 ⁶	1	3.67098×10 ⁵	8.6000 ×10 ²
9.80665	2.72407×10 ⁻⁶	1	2.34270×10 ⁻³
4.18605×10 ³	1.16279×10 ⁻³	4.26858×10 ²	1

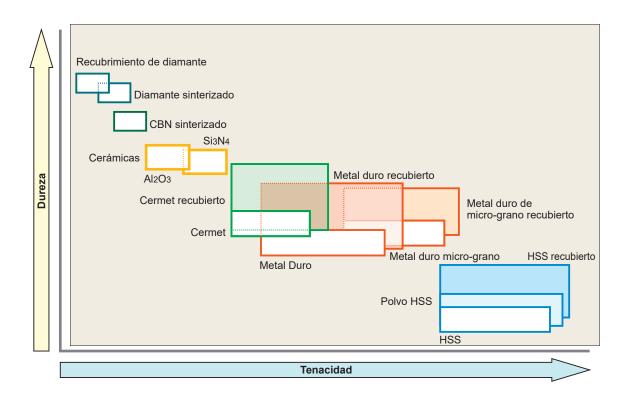
Nota 1) 1J=1W•s, 1J=1N•m 1cal=4.18605J (Del sistema de pesos y medidas)

Potencia (Porcentaje de Producción / Potencia motriz) / Porcentaje de flujo de calor

w	kgf•m/s	PS	kcal/h		
1	1.01972×10 ⁻¹	1.35962×10 ⁻³	8.6000 ×10 ⁻¹		
9.80665	1	1.33333×10 ⁻²	8.43371		
7.355 ×10 ²	7.5 ×10	1	6.32529×10 ²		
1.16279	1.18572×10 ⁻¹	1.58095×10 ⁻³	1		

Nota 1) 1W=1J/s, PS: Caballos de potencia en Francia 1PS=0.7355kW (Según ley de pesos y medidas) 1cal=4.18605J

DESGASTE Y ROTURA DE LA HERRAMIENTA

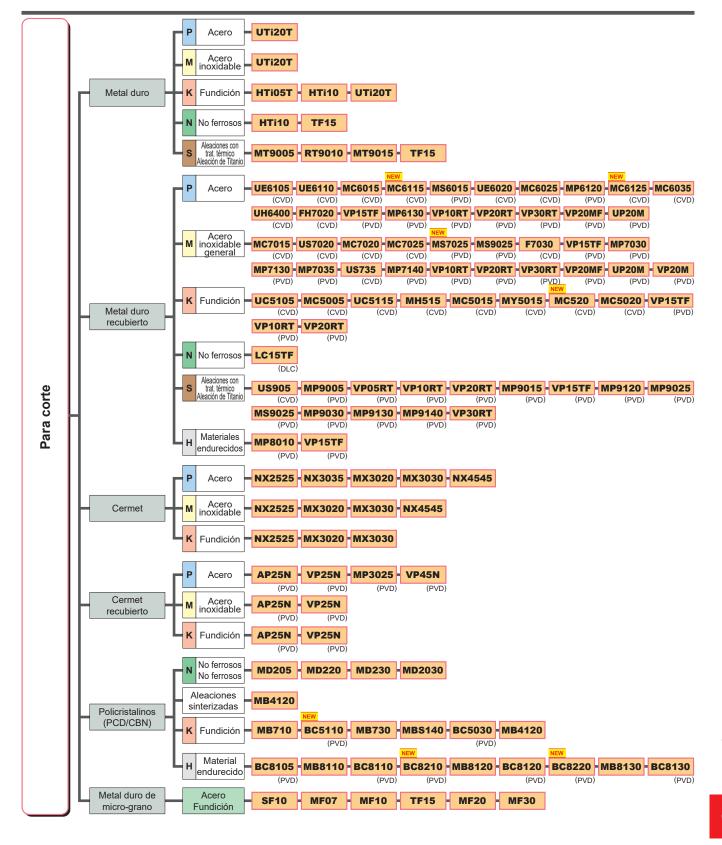

CAUSAS Y CONTRAMEDIDAS

Tipos de	daño en los insertos	Causa	Contramedida
Desgaste del flanco		 Grado del inserto demasiado blando. Velocidad de corte demasiado alta. Ángulo de desprendimiento demasiado pequeño. Avance extremadamente bajo. 	 Grado de inserto con alta resistencia al desgaste. Reducir velocidad de corte. Aumento del ángulo de desprendimiento. Aumento del avance.
Desgaste en cráter		 Grado del inserto demasiado blando. Velocidad de corte demasiado alta. Avance demasiado alto. 	 Grado de inserto con alta resistencia al desgaste. Reducir velocidad de corte. Reducir avance.
Micro-roturas		 Grado del inserto demasiado duro. Avance demasiado alto. Pérdida de la robustez del filo. Pérdida de la rigidez de la herramienta. 	 Grado de inserto de alta tenacidad. Reducir avance. Aumento del honing. (Cambio de honing redondeado a honing con chaflán.) Utilizar herramienta de mayor diámetro
Rotura		 Grado del inserto demasiado dura. Avance demasiado alto. Pérdida de la robustez del filo. Pérdida de la rigidez de la herramienta. 	Grado de inserto de alta tenacidad. Reducir avance. Aumento del honing. (Cambio de honing redondeado a honing con chaflán.) Utilizar herramienta de mayor diámetro.
Deformación plástica		 Grado del inserto demasiado blando. Velocidad de corte demasiado alta. Profundidad de corte y avance excesivos. Alta temperatura de corte. 	 Grado de inserto con alta resistencia al desgaste. Reducir velocidad de corte. Reduzca la profundidad y el avance. Grado de inserto de alta conductibilidad del calor.
Rotura térmica		 Expansión y contracción debido al calor en el corte. Grado del inserto demasiado duro. *Especialmente en fresado. 	Corte en seco. (Para corte refrigerado, la pieza debe de estar sumergida en fluido. Grado de inserto de alta tenacidad.
Muescas		 Superficies duras, piezas enfriadas rápidamente y capas endurecidas por el mecanizado. Fricción causada por virutas dentadas. (Causado por una pequeña vibracón) 	 Grado de inserto de alta resistencia al desgaste. Aumento del ángulo de desprendimiento para un corte má suave.
Adhesión de material		Velocidad de corte baja.Filo de corte poco agudo.Grado inapropiado.	 Aumento de la velocidad de corte. (Para JIS S45C,velocidad de corte 80m/min Aumento del ángulo de desprendimeinto Grado de inserto de baja afinidad. (Grado recubierto, grado cermet)
Rotura por escamas		 Adhesión de material en el filo de corte. Deficiente evacuación de virutas. 	 Aumento del ángulo de desprendimiento para un corte más suave. Agrandar la salida de viruta.
Desgaste de flanco Rotura *Roturas típicas de policristalinos		Daño debido a la falta de resistencia de un filo redondeado.	Aumento del honing. Grado de inserto de alta tenacidad
Desgaste en cráter Rotura *Roturas típicas de policristalinos		 Grado del inserto demasiado blando. La resistencia de corte es muy alta y genera mucho calor. 	 Reduzca el honing. Grado de inserto de alta resistencia al desgaste.

MATERIALES DE CORTE

La figura muestra la relación entre varios materiales de herramientas, en relación de la dureza en el eje vertical y la tenacidad en el eje horizontal.

Hoy, el carburo cementado, carburo recubierto y el cermet con base de TiC-TiN son materiales claves en el mercado. Esto es debido a que tienen el mejor balance de dureza y tenacidad.



CARACTERÍSTICAS DE LOS GRADOS

Materiales duros	Dureza (HV)	Formación de energía (kcal/g·atom)	Solubilidad en hierro (%.1250°C)	Conductividad térmica (W/m·k)	Expansión térmica (x 10 ⁻⁶ /k)*	Material
Diamond	>9000	-	Altamente soluble	2100	3.1	Diamante sinterizado
CBN	>4500	-	-	1300	4.7	CBN sinterizado
Si3N4	1600	_	-	100	3.4	Cerámicas
Al ₂ O ₃	2100	-100	≒ 0	29	7.8	Cerámicas Metal duro
TiC	3200	-35	< 0.5	21	7.4	Cermet Metal duro recubierto
TiN	2500	-50	-	29	9.4	Cermet Metal duro recubierto
TaC	1800	-40	0.5	21	6.3	Metal duro
WC	2100	-10	7	121	5.2	Metal duro

*1W/m•K=2.39×10⁻³cal/cm•sec•°C

GRUPOS DE GRADOS

Q

TABLA DE COMPARACIÓN DE GRADOS

METAL DURO

Clasi-	ISO	MITSUBISHI MATERIALS	Sumitomo Electric	Tungaloy	Kyocera	Dijet	MOLDINO	Sandvik	Kennametal	Seco Tools	Iscar
Clasi- ficación		WATERIALS	Electric							10015	
Р	P01 P10		ST10P	TH10			WS10				IC70
		UTIONT									IC70
	P20	UTi20T	ST20E A30	UX30			EX35				IC50M IC50M
	P30	UTi20T	A30N	KS15F			EX35				IC54
	P40		ST40E	TX40			EX35				IC54
М	M10		EH510	TH10			WA10B		KU10 K313 K68	890	IC07
	M20	UTi20T	EH520	KS20			EX35		KU10 K313 K68	HX 883	IC07 IC08 IC20
	M30	UTi20T	A30 A30N	UX30			EX35				IC08 IC20 IC28
	M40			TU40							IC28
K	K01	HTi05T	H1 H2	KS05F			WH01 WH05		KU10 K313 K68		
I OI III E B CO	K10	HTi10	EH510	TH10	KW10 GW15	KT9	WH10		KU10 K313 K68	890	IC20
5	K20	UTi20T	G10E H10E EH520	KS15F KS20	GW25	KT9	WH20	H13A	KU10 K313 K68	HX	IC20
	K30	UTi20T	G10E H10E							883	
N	N01		H1	KS05F	GW05			H10			
	N10	HTi10	H2 EH510	TH10	KW10 KW10 GW15	KT9	WH10	H10 HBA	KU10 K313	890	IC08 IC20
	N20		G10E EH520	KS15F		KT9	WH20	H10 HBA	K68 KU10 K313	HX KX	IC08 IC20
	N30								K68	883	
S	S01	MT9005			SW05						
	S10	MT9005 RT9010 MT9015	EH510	KS05F TH10	SW10		WH13S	H10A H10F H13A	KU10 K313 K68	HX 883	IC07 IC08
	S20	RT9010 TF15	EH520	KS15F KS20	SW25				KU10 K313 K68	883	IC07 IC08
	S30	TF15									
Р	P10										
	P20	UTi20T	A30N				EX35	·	K125M	·	IC50M IC28
	P30	UTi20T	A30N	UX30			EX35	SM30	GX		IC50M
	P40						EX35				IC28 IC28
м	M10										
2	M20	UTi20T	A30N				EX35				IC08
I Esado	M30	UTi20T	A30N				EX35	SM30			IC20 IC08
-	M40	0201	7,0014					5,1100			IC28 IC28
K	K01	HTi05T							K115M,K313		1020
K	K10	HTi10	G10E	TH10	KW10	KT9	WH10		K115M,K515		IC20
				11110	GW25			U12A	K313	ш∨	
	K20	UTi20T	G10E		GW25	FZ15	WH20	H13A		HX	IC20

MICRO-GRANO

	Clasi- ficación		MITSUBISHI MATERIALS		Tungaloy	Kyocera	Dijet	MOLDINO	Sandvik	Kennametal	Seco Tools
corte	Z	Z 01	SF10 MF07 MF10	F0	F MD05F MD1508		FZ05 FB05 FB10	NM08	PN90 6UF,H3F 8UF,H6F		
g		Z10	HTi10 MF20	XF1 F1 AFU	MD10 MD0508 MD07F	FW30	FZ10 FZ15 FB15	NM10 NM12 NM15	H10F		890
ramien	Herramientas	Z20	TF15 MF30	AF0 SF2 AF1	EM10 MD20 G1F		FZ15 FB15 FB20	BRM20 EF20N	H15F		890 883
Her		Z30		A1 CC			FZ20 FB20	NM25 NM40			883

CERMET

	01 :	ISO		Sumitomo	Tungaloy	Kyocera	Dijet	MOLDINO	Sandvik	Kennametal	Seco	Iscar
	Clasi- ficación	Símbolo	MATERIALS	Electric	Tuligaloy	-	Dijet	MOLDING	Odilavik	Remiametar	Tools	13001
	P	P01	AP25N* VP25N*	T1000A	NS520 GT720*	CCX* TN610 PV710* PV30*						IC20N IC520N*
		P10	NX2525 AP25N* VP25N*	T1500A T1500Z*	NS520 NS9530 GT9530* AT9530*	CCX* TN60 TN610 PV710* TN620 PV720*	CX75	CZ25*	CT5015 GC1525*	KT315 KT125	TP1020 TP1030* CM CMP*	IC20N IC520N* IC530N*
•		P20	NX2525 AP25N* VP25N* NX3035 MP3025*	T1500A T1500Z* T2500A T2500Z* T3000Z*	NS9530 GT9530* AT9530*	TN60 TN620 PV720* TN6020	CX75 PX90*	CH550	GC1525*	KT325 KT1120 KT5020*	TP1020 TP1030*	IC20N IC520N* IC30N IC530N* IC75T
ado		P30	MP3025 * VP45N*	T3000Z*		PV730* PV90*	PX90*					IC75T
Torneado	M	M10	NX2525 AP25N* VP25N*	T1000A T1500Z*		TN60 TN620 PV720* TN6020		CZ25*	GC1525*	KT125	TP1020 TP1030* CM CMP*	
		M20	NX2525 AP25N* VP25N*	T1500A T1500Z*		TN90 TN6020 TN620 PV720* PV90*		CH550				
		M30				PV730*						
	K	K01	NX2525 AP25N*	T1000A	NS520 GT720*	CCX* PV7005*						
		K10	NX2525 AP25N*		NS520 NS9530 GT9530*	CCX* PV7005* TN60		CZ25*	CT5015	KT325 KT125		
		K20	NX2525 AP25N*					CH550				
	Р	P10	NX2525			TN620M TN60	CX75	MZ1000*			C15M	IC30N
		P20	MX3020 NX2525	T250A T2500A		TN100M TN620M TN60	CX75 CX90	CH550 CH7030 MZ1000*	CT530	KT530M HT7 KT605M	C15M MP1020	IC30N
		P30	MX3030 NX4545	T4500A	NS740		CX90	CH7035				IC30N
9	М	M10	NX2525			TN60						IC30N
Fresado		M20	MX3020 NX2525	T250A T2500A		TN100M	CX75		CT530	KT530M HT7 KT605M	C15M	IC30N
		M30	MX3030 NX4545	T4500A								
	K	K01										
		K10	NX2525			TN60	CX75					
		K20	NX2525		·		CX75			KT530M HT7		·

*Cermet recubierto

TABLA DE COMPARACIÓN DE GRADOS

GRADO CVD RECUBIERTO

Clasi- ficació	ISO Símbolo	MITSUBISHI MATERIALS	Sumitomo Electric	Tungaloy	Kyocera	Dijet	MOLDINO	Sandvik	Kennametal	Seco Tools	Iscar
P	P01	MC6115 UE6105	AC810P AC8015P	T9105 T9205	CA510 CA5505	JC110V	HG8010	GC4305 GC4415	KCP05B KCP05	TP0501 TP1501	IC9150 IC8150 IC428
	P10	MC6115 UE6105 MC6015 UE6110 MY5015 MC6125	AC810P AC8020P	T9205 T9105 T9115 T9215	CA510 CA5505 CA515 CA5515	JC110V JC215V	HG8010 HG8025 GM8020	GC4315 GC4325 GC4415	KCP10B KCP10 KCP25	TP1501 TP2501	IC9150 IC8150 IC8250
	P20	MC6115 MC6015 UE6110 MC6125 MC6025 UE6020 MY5015	AC8020P AC820P AC2000 AC8025P	T9115 T9125 T9215 T9225	CA025P CA515 CA5515 CA525 CA5525 CR9025	JC110V JC215V	HG8025 GM8020 GM25	GC4315 GC4325 GC4425	KCP25B KCP30B KCP25	TP2501	IC8250 IC9250 IC8350
	P30	MC6125 MC6025 UE6020 MC6035 UH6400	AC6030M AC8035P AC830P AC630M	T9125 T9135 T9225 T9235	CA025P CA525 CA5525 CA530 CA5535 CR9025	JC215V JC325V	GM25 GM8035	GC4325 GC4335 GC4425	KCP30B KCP30	TP3501	IC8350 IC9250 IC9350
2	P40	MC6035 UH6400	AC6030M AC8035P AC630M AC830P	T9135 T9235	CA530 CA5535	JC325V	GM8035 GX30	GC4335	KCP40 KCP40B	TP3501 TP40	IC9350
M	M10	MC7015 US7020	AC610M AC6020M	T6120 T6215	CA6515			GC2015 GC2220	KCM15B KCM15	TM1501 TM2000	IC6015
M	M20	MC7015 US7020 MC7025	AC6020M AC610M AC6030M	T6120 T6215	CA6515 CA6525		HG8025 GM25	GC2015 GC2220	KCM15 KCM25B KCP40B	TM2000 TM2501	IC8150 IC6015
	M30	MC7025 US735	AC630M AC6030M AC630M	T6130	CA6525		GM8035 GX30	GC2025	KCM35B KCP40	TM4000 TM3501	IC8250 IC6025
	M40	US735	AC6030M AC630M				GX30	GC2025	KCM35B	TM4000 TM3501	IC6025
K	K01	MC5005 UC5105	AC405K AC410K AC4010K	T505 T515 T5105	CA4505 CA4010 CA310	JC050W JC105V	HX3505	GC3205 GC3210	KCK05B KCK05	TK0501 TH1500	IC5005
	K10	MC5015 MH515 UC5115 MY5015	AC405K AC4010K AC410K AC4015K AC415K	T515 T5115	CA315 CA4515 CA4010 CA4115		HX3515 HG8010	GC3205 GC3210	KCK15B KCK15 KCK20 KC9315 KCK20B	TK0501 TK1501	IC5005 IC5010 IC428
	K20	MC5015 MH515 UC5115 UE6110 MY5015	AC4015K AC415K AC420K AC8025P	T5115 T5125	CA320 CA4515 CA4115 CA4120		HG8025 GM8020	GC3225	KCK20B KCK20 KCPK05	TK1501	IC5010 IC8150
	K30	UE6110	AC8025P	T5125			HG8025 GM8020	GC3225	KCPK05		
S	S01	MV9005 US905			CA6515 CA6525		HS9105 HS9115	S05F S205			
Р	P10	MV1020	ACP2000 XCU2500 ACP100		0/10020		1100110	0200		MP1501	IC5400
	P20	MV1020 MC7020 F7030	ACP2000 ACP3000 XCU2500 ACP100	T3130 T3225			GX2140 GF30	GC4220		MP1501 MP2501 T25M	IC5500
	P30	MV1020 MC7020 F7030	ACP3000 XCU2500 ACP100	T3130 T3225			GX2140 GX2160 GF30	GC4330 GC4230	KCPK30 KC930M	MP1501 MP2501 TM25 T350	IC5500
	P40						GX2030 GX2160	GC4340 GC4240	KC935M KC530M	MM4500 T350M	
М	M10		XCU2500							MP2501	
	M20	MC7020 F7030	ACP100 ACM200 XCU2500	T3130 T3225	CA6535		AX2040 GX2140		KC925M	MS2500 T25M T350M	
	M30	MV1020 MC7020 F7030	ACP100 XCU2500 ACM200	T3130 T3225	CA6535		AX2040 GX2140 GX2160 GX30	GC2040	KC930M	MP2501 T25M T350M	IC5820
	M40						GX2160		KC930M KC935M	MM4500 T350M	
K	K01	MV1020 MC520 MC5020	XCK2000 ACK200	T1215 T1115	CA420M	JC605W	GX2120				
	K20	MV1020 MC520 MC5020	ACK200 XCK2500 XCK2000 ACK200	T1115		JC605W	GX2120	GC3220 GC3330 K20W	KC915M	MP1501	IC5100
	K30							GC3330 GC3040	KC920M KC925M KCPK30 KC930M KC935M	MP1501	IC5100 DT715

GRADO PVD RECUBIERTO

	Clasi- ficación	ISO Símbolo		Sumitomo Electric	Tungaloy	Kyocera	Dijet	MOLDINO	Sandvik	Kennametal	Seco Tools	Iscar
	Р	P01										
		P10	VP10MF MS6015		AH710	PR1705 PR930 PR1025 PR1115 PR1225 PR1725			GC1125	KCU10 KT315 KC5010 KC5510 KU10T KTP10	CP200 TS2000	IC250 IC50 IC570 IC80 IC907 IC90
		P20	VP10RT VP20RT VP15TF VP20MF MS6015		AH725 AH120 J740 SH730 SH725	PR930 PR1025 PR1725 PR1115 PR1225 PR1425 PR1535		IP2000	GC1525 GC1125 GC15	KT315 KCS10 KCU10 KC5025 KC5525 KU25T KTP10	TS2500	IC1007 IC250 IC308 IC507 IC807 IC808 IC907 IC908 IC1008 IC1028 IC302
		P30	VP10RT VP20RT VP15TF VP20MF MS7025	AC1030U AC530U	AH725 AH120 SH730 GH730 GH130 AH740 J740 SH725 AH7025	PR1025 PR1725 PR1225 PR1425 PR1535 PR1625		IP3000	GC1125	KCU25 KC5525 KU25T	CP500	IC228 IC250 IC328 IC330 IC354 IC528 IC1008 IC1028 IC30
		P40			AH740	PR1535					CP500 CP600	IC228 IC328 IC528 IC928 IC1008 IC102 IC3028
	М	M01				PR1725	JC5003				CP200 TS2000	
		M10	VP10MF		AH8005 AH630	PR1025 PR1225 PR930 PR1725	JC5003 JC8015 JC5015	IP050S	GC1525 GC1115 GC15 GC1125 GC1105	KCS10 KCU10 KC5010	CP200 TS2000 TS2500	IC354 IC507 IC520 IC807 IC907 IC100 IC5080T
op		M20	VP10RT VP20RT VP15TF VP20MF MS7025 MS9025	AC1030U AC530U AC6040M	AH725 AH120 SH730 AH630 SH725 AH8015 AH7025	PR1025 PR1225 PR930 PR1535 PR1725	JC5015 JC8015 JC5118	IP100S	GC1525 GC1115 GC15 GC1125	KCU25 KC5025 KCU10 KC5010 KCS10	TS2500 CP500 CP600	IC354 IC808 IC908 IC100 IC1028 IC30 IC5080T
Torneado		M30	VP10RT VP20RT VP15TF VP20M VP20MF MS7025 MP7035	AC530U AC1030U AC6040M	AH725 AH120 SH730 J740 AH645 SH725	PR1025 PR1725 PR1535 PR1225	JC5118		GC1125 GC2035	KC5025 KCU25	CP500 CP600	IC228 IC250 IC328 IC330 IC1008 IC10 IC9080T
		M40	MP7035	AC530U AC6040M AC1030U	AH645	PR1535 PR1225			GC2035		CP600	IC328 IC928 IC1008 IC102 IC3028 IC908
	K	K01			011110					1/01/10 1/00/10	0000	10050100
		K10		AC510U	GH110 AH110				GC15	KCU10 KCS10 KC5010 KC5510	CP200 TS2000	IC350 IC9 IC1008
		K20	VP10RT VP20RT VP15TF	AC1030U AC530U	AH7025 AH120					KCU15 KCU25	CP200 TS2000 TS2500	IC228 IC350 IC808 IC830 IC908 IC100 IC1008
		K30	VP10RT VP20RT VP15TF		AH120 GH130					KCU25 KC5525	CP500	IC228 IC350 IC808 IC830 IC908 IC928 IC1007 IC10
	S	S01	MP9005 VP05RT	AC510U AC5005S AC5015S	AH8005	PR005S PR015S	JC5003 JC8015 JC5015	JP9105			TH1000	IC507 IC804 IC807 IC90 IC5080T
		S10	MP9005 MP9015 VP10RT	AC5005S AC510U AC520U AC5015S AC5025S	AH8005 AH8015	PR005S PR015S	JC5003 JC5015 JC8015	JP9115	GC1105	KCU10 KC5010 KCS10	CP200 TS2000 TS2050 TS2500 TH1000	IC507 IC80 IC807 IC90 IC5080T
		S20	MP9015 MT9015	AC520U AC5015S AC5025S	AH7025 AH8015	PR015S PR1535	JC5015 JC5118		GC1105 GC1115 GC1125 GC15	KCU10 KCU25 KC5025 KCS10 KC5010	TS2000 TS2500 CP200	IC228 IC300 IC328 IC808 IC908 IC928 IC3028 IC806 IC90
		S30	MS9025 MP9025 VP15TF VP20RT	AC1030U	AH630 AH7025	PR015S PR1535	JC5118		GC1125	KCU25 KC5025	CP600	IC928 IC8
ဝင္ပ	Р	P01			AH710 AH110		JC8003	ATH80D JP4105				IC903
Fresado		P10		ACU2500	AH120 AH725	PR830 PR1225	JC8003 JC8015 JC5015 JC5118	PN15M PN215 PCA12M JP4115	GC1010 GC1130	KC505M KC715M KC510M KC515M		IC808 IC87 IC900 IC90 IC908 IC97 IC950 IC38

TABLA DE COMPARACIÓN DE GRADOS

GRADO PVD RECUBIERTO

Clasi- ficación	ISO Símbolo	MITSUBISHI MATERIALS	Sumitomo Electric	Tungaloy	Kyocera	Dijet	MOLDINO	Sandvik	Kennametal	Seco Tools	Iscar
Р	P20	MP6120 VP15TF	ACU2500 ACP200	AH3225 AH725 AH120 GH330 AH9030 AH3135	PR830 PR1225 PR1230 PR1525	JC5015 JC8015 JC5118	CY9020 JP4120 CY150	GC1010 GC1030 GC1130 GC2030	KC522M KC525M KC527M KC610M KC620M KC635M KC715M KC720M KC730M	F25M MP3000	IC808 IC810 IC830 IC900 IC908 IC910 IC928 IC950 IC1008 IC38
	P30	MP6120 VP15TF MP6130 VP30RT	ACU2500 ACP200 ACP300 ACP3000	AH120 AH130 AH6030 AH725 AH3225 AH3135 AH9130	PR1230 PR1525	JC8050 JC5040 JC5118	JS4045 CY250 CY250V CY25 HC844 JS4060	GC1010 GC1030 GC2030 GC1130	KC735M KC725M KC530M KC537M	F25M MP3000 F30M MP2050	IC830 IC845 IC900 IC928 IC950 IC1008 IC38
	P40	VP30RT	ACP300	AH140	PR1525	JC8050 JC5040	PTH30E PTH40H JS4060	GC2030 GC1030 GC1130	KC735M KC537M	F40M T60M	IC830 IC928 IC1008
M	M01 M10		ACU2500 ACM100	AH725	PR1225		PN08M PN208 PN15M PN215	GC1025 GC1030 GC1010 GC1130	KC715M KC515M		IC907 IC903
	M20	VP15TF MP7130 MP7030 VP20RT	ACU2500	AH725 AH3135 AH6030 AH130 AH3225 AH9130	PR830 PR1225 PR1525	JC5015 JC5118 JC8015	JP4120	GC1025 GC1030 GC1040 GC2030 S30T	KC610M KC635M KC730M KC720M KC522M KC525M	F25M MP3000	IC808 IC83 IC900 IC90 IC928 IC38 IC1008
	M30	VP15TF MP7130 MP7030 VP20RT MP7140 VP30RT	ACP300 ACM300 ACK300	AH130 AH9130 AH3135	PR830 PR1225 PR1525 PR1535	JC5015 JC8015 JC8050 JC5118	JS4045 CY250	S30T GC1040 GC2030	KC537M KC725M KC735M KC530M	F30M F40M MP3000 MP2050	IC328 IC330 IC380 IC830 IC882 IC928 IC1008 IC38
	M40	MP7140 VP30RT	ACM300	AH140	PR1525 PR1535	JC8050	PTH30E PTH40H JM4160			F40M MP2050	IC328 IC33 IC882 IC1008
K	K01	MP8010		AH110		JC8003	ATH80D ATH08M TH308				IC380 IC900
	K10	MP8010	ACU2500 ACK3000	AH110 AH120	PR1210 PR1510	JC8015	ATH10E TH315 CY100H	GC1010	KC514M KC515M KC527M KC635M	MK2050	IC810 IC900 IC910 IC380
	K20	VP15TF VP20RT	ACU2500 ACK300 ACK3000	AH120 AH9130 AH9030	PR1210 PR1510	JC5015 JC8015	CY150 JP4120 CY9020 PTH13S	GC1010 GC1020	KC514M KC610M KC520M KC620M KC524M	MK2000 MK2050	IC810 IC910 IC92 IC950
	K30	VP15TF VP20RT	ACK300 ACK3000			JC5080 JC5015 JC8015	CY250 JS4045	GC1020	KC522M KC725M KC524M KC735M KC537M	MK2050	IC808 IC830 IC90 IC928 IC1008
S	S01			AH110 AH710	PR905 PR1210	JC8003 JC8015 JC5118	PN08M PN208				IC907 IC90 IC808 IC90
	S10	MP9120 VP15TF	ACM100 ACU2500	AH120 AH725	PR1210 PR1535	JC8003 JC5015 JC8015 JC5118	JS1025 JP4120	GC1130 GC1010 GC1030 GC2030	KC510M	MS2050	IC903 IC90 IC908 IC84 IC910 IC80
	S20	MP9120 VP15TF MP9130 MP9030	ACK300 ACP300 ACU2500	AH725 AH6030 AH130	PR1210 PR1535	JC8015 JC5015 JC8050 JC5118	PTH30H	S30T GC2030 GC1030 GC1130	KC522M KC525M	MS2050 MP2050	IC300 IC90 IC808 IC90 IC830 IC92 IC328 IC33 IC840 IC88 IC380
	S30		ACM300	AH130	PR1535	JC8050 JC5118	JM4160	GC2030 GC1040	KC725M	MS2050 F40M KCSM40	IC830 IC88 IC928
Н	H01	MP8010 VP05HT		AH110 AH710		JC8003	ID4405				IC903
	H10	VP15TF VP10H		AH110 AH120 AH710		JC6102 JC8008	JP4105 TH303 TH308 PTH08M ATH08M ATH80D	GC1130 GC1010 GC1030	KC505M KC510M	MH1000 F15M	IC900 IC80 IC907
	H20	VP15TF		AH120 AH725 AH9030		JC8015 JC5118	JP4115 TH315	GC1030 GC1130	KC635M	F15M	IC900 IC80 IC908 IC38
	H30						JP4120			MP3000 F30M	IC380 IC90 IC1008

CBN

	Clasi- ficación	ISO Símbolo	MITSUBISHI MATERIALS	Sumitomo Electric	Tungaloy	Kyocera	Dijet	Sandvik	Seco Tools
	Н	H01	BC8105 BC8110 MB8110	BNC100 BNX10 BN1000 BNC2010	BXM10 BX310	KBN05M KBN10M KBN510		CB7105	CBN060K
		H10	BC8110 BC8210 BC8120 BC8220 MB8110 MB8120	BNC160 BNX20 BN2000 BNC2020	BXM10 BX330 BX530	KBN05M KBN25M KBN525	JBN300	CB7115 CB7015	CBN010
		H20	BC8210 BC8120 BC8220 MB8120	BNC200 BNX25 BN250 BNC2020	BXM20 BXA20 BX360	KBN525 KBN05M KBN25M	JBN245	CB7125 CB7025 CB20	CBN150 CBN160C
0		H30	BC8130 MB8130	BNC300 BN350	BXC50 BX380	KBN35M		CB7135 CB7525	CBN150 CBN160C
Torneado	S	S01	MB730	BN700 BN7000	M714B				CBN170
or.		S10		BNS8125	BX470, BX480				
		S20							
		S30							
	K	K01	MB710 BC5110 MB5015	BN500 BNC500	BX870 BX930 BX910				
		K10	MB730 MB4120	BN700 BN7500 BN7000	BX470 BX480	KBN60M	JBN795	CB7525	
		K20	MB730 MB4120	BN700 BN7000	BX480	KBN60M	JBN500		CBN200
		K30	BC5030 MBS140	BNS800 BNC8115, BNC8125	BX90S BXC90	KBN900		CB7925	CBN300 CBN400C CBN500
		eaciones erizadas	MB4120	BN7500 BN7000 BNC7115	BX470 BX480	KBN570 KBN70M			CBN200

PCD

	Clasi- ficación	ISO Símbolo	MITSUBISHI MATERIALS	Sumitomo Electric	Tungaloy Kyocera		Dijet	Sandvik	Seco Tools
9	N	N01	MD205*	DA90	DX180 DX160	KPD001	JDA30 JDA735	CD05	PCD05
nead		N10	MD220	DA150	DX140	KPD010		CD10	PCD10
Ē		N20	MD220	DA2200	DX120		JDA715		PCD20
Tor		N30 MD230* MD2030		DA1000	DX110	KPD230	JDA10		PCD30 PCD30M

^{*} A pedido únicamente.

TABLA DE COMPARACIÓN DE ROMPEVIRUTAS

INSERTO NEGATIVO

Claşifi-	Tipo de	MITSUBISHI	Sumitomo			5				Seco		
Clasifi- cación ISO	mecanizado		Electric	Tungaloy	Kyocera	Dijet	MOLDINO	Sandvik	Kennametal	Tools	Walter	TaeguTec
Р	Terminación	FH, FP FY, FS	FA, FB FL	01* TF, 11 ZF	GP, PP, VF XP, XP-T, XF		FE	LC	FF	FF1, FF2	FP5	FA FX
	Ligero	LP SA, SH	SU LU, FE SX, SE	PS NS, 27 TSF, AS, TQ	PQ HQ, CQ	PF UR, UA, UT	BE B, BH, CE	XF PF MF	K LF, FN	MF2	MP3, FV5	FM FG
	Ligero (Acero medio)	SY		17	XQ, XS							FC
	Ligero (Con Wiper)	SW	LUW, SEW	FW, SW AFW, ASW	WF WP, WQ			WL, WF	FW	W-FF2 W-MF2	FW5, NF	WS
	Medio	MP MA MH	GU UG GE, UX	PM, NM, ZM TA, TM, AM, 28 DM, 33, 37, 38		PG UB	CT, AB AH, AR AY, AE	PM QM, XM XMR	MP, P MN	MF3 MF5, M3 M5	MP5, MV5 MU5	PC, MP, FT MT
	Medio (Con Wiper)	MW	GUW		WE			WMX, WM WR	MW, RW	W-M6, W-M3 W-MF5	MW5, NM	WT
	Desbaste	RP GH Estándar	MU, MX, ME	TH Estándar	PH GT Estándar	UD GG	RE Y	PR, HM Estándar	RN, RP	M6, MR6, MR7	RP5, RP7 RV5	RT Estándar
	Pesado	HZ HL, HM, HX HV	MP HG, HP HU, HW, HF	TRS, 57 TU TUS, 65	PX	UC	HX HE, H	QR, PR HR, MR	MR, RP RM RH	R4, R5 R57, RR6, R7 R68, RR9	NRF HU5 NRR	RX, RH HD, HY, HT HZ, EH
M	Terminación Ligero	SH, LM	SU, EF	SS	MQ, SK*		MP, AB, BH	XF, MF	FF, FP LF*	FF1, FF2 MF1	FM5	SF
	Medio	MS, GM MM, MA ES	EX, EG, UP GU HM	SA, SF SM S	MS, MU TK ST	SF, SZ SG	PV, DE, SE AH	MM QM, XM K	MS, MP UP	MF3 MF4 MF5, M3	MM5, RM5 MU5	ML EM, MM VF
	Pesado	GH, RM HL, HZ	EM, MU	TH, SH			AE	MR MR	MR, RP	M5, M6, R6 R56, RR6, R7 R8,PR9	HU5	
K	Terminación Ligero	LK, MA		CF	KQ		VA, AH	KF	FN	MF2 M3, M4	MK5	FG
	Medio	MK, GK Estándar	UZ, GZ, UX	CM Estándar	KG, Estándar, C	PG	V, AE	KM	RP,UN	M5	RK5, MV7	MC
	Desbaste	RK			KH. GC, PH	GG	RE	KR, KRR		MR7	RK7 RV7	КТ
	Pesado	Sin rompevirutas	Sin rompevirutas	CH, Sin rompevirutas	ZS, Sin rompevirutas	Sin rompevirutas	Sin rompevirutas		Sin rompevirutas	MR9 Sin rompevirutas	Sin rompevirutas	
S	Terminación	FJ*	EF		MQ, SK*			SF	FS*, FF	MF1	FM5	FA
	Ligero	LS,MJ,MJ*	su*	HRF				SGF*	LF*, MS, FN	MF3	NFT MS3	EA, SF
	Medio	MS MA	EG, EX, UP	HRM, 28 SA, HMM	SQ MS, MU, TK		VI	NGP*, SM QM	UP, P, NGP*	M1 M3	NMS, NMT MU5	
	Pesado	RS, GJ	MU		SG, SX			SR, SMR	RP	MR3 MR4	NRS, NRT HU5	ET

*Inserto con forma redonda.

Nota 1) El cuadro anterior esta basado en información publicada por cada fabricante.

INSERTO POSITIVO DE 7º

Clasifi- cación ISO	Tipo de mecanizado	MITSUBISHI MATERIALS	Sumitomo Electric	Tungaloy	Kyocera	Dijet	MOLDINO	Sandvik	Kennametal	Seco Tools	Walter	TaeguTec
Р	Terminación	SMG*	FC*, SC*	JS*, 01*	CF*,CK* GQ*,GF* SKS*, SK*			UM*	LF*		FP2*	SA*
	Terminación Ligero	FP, FV	FB, FP, LU	PF, PSF	GP, PP, VF		JQ	PF, UF	UF, 11	FF1	PF4, FP4	FA, FX
		LP, SV	LB, SU	PS, PSS, TSF	XP				LF, FP	F1, MF2		FG
	Ligero (Con Wiper)	sw	LUW, SDW		WP			WF	FW	W-F1	PF	
	Medio	MV	GU	TM, 23 PM, 24	HQ, MF*	FT	JE	PM, UM		M3	FP6, MP4	PC
	Wedio	MP, Estándar	MU		XQ, GK			PR, UR	MF, MP	F2, M5	RP4	MT
	Medio (Con Wiper)	MW		SW				WM	MW	W-MF2 W-M3	PM	WT
M	Terminación	FM	FC*,SI*	PF, PSF PS, PSS	CF*,CK*		MP	MF, UF	LF, UF FP		FM2*	FA
			LU		GQ*,GF*					F1, F2	FM4	FG
	Ligero	LM	LB, SU		MQ*,SK*					MF2		
	Medio	ММ	GU, MU	PM	HQ, GK			MM, UM	MP	M3	FM6	PC
	modio	Estándar			,			MR, UR		M5	MM4, RM4	MT
K	Medio	MK, Estándar Sin rompevirutas	MU, Sin rompevirutas	Sin rompevirutas, CM	Sin rompevirutas			KF, KM, UM, KR	Sin rompevirutas	F1, M3, M5	FK6, MK4 RK4, RK6	MT
N	Medio	AZ*	AG* AW*	AL*	AP* AH*	ASF*,ALU* ACB*		AL*	HP*	AL*	FN2*, PM2* MN2*	FL*
S	Terminación Ligero	FS *, LS *	LS-P* SI*	Estándar	CF*, CK*			UM*	LF*		FM2*	SA*, FA, FG
		FS-P ", LS-P " FJ *			GQ*, GF*			UF, MF	HP*		FM4, FM6	
		LS, MS			SK*, MQ			UM, MM	'''		MM4, RM4	PC, MT

★Inserto con forma redonda.

Nota 1) El cuadro anterior esta basado en información publicada por cada fabricante.

INSERTO POSITIVO DE 11º

Clasifi- cación ISO	Tipo de mecanizado	MITSUBISHI MATERIALS	Sumitomo Electric	Tungaloy	Kyocera	Dijet	MOLDINO	Sandvik	Kennametal	Seco Tools	Walter	TaeguTec
Р	Terminación Ligero	FV, SMG*	SI, FK. FB LU, LUW, LB SU,SF		PP, GP, GF* SKS*, CF*, CK* PF*, XP		JQ	PF	UF, FP FW, LF		FP4	FG PC
	Medio	MV	GU, MU, US	PM TM, 23 24	HQ XQ	ВМ	JE	PM, UM	MF MP, MW		MP4	
M	Terminación Ligero	SMG* SV	SU	SS* PF, PS	GF*, CK* PF*, GP, CF* SKS*		MP	MF	HP*		FM4	PC
	Medio	MV	GU, MU, US	PM, Estándar	HQ			MM			MM4	

⋆Inserto con forma redonda.

Nota 1) El cuadro anterior esta basado en información publicada por cada fabricante.

Memo